1) по формуле Герона
Полупериметр р=(10+10+12):2=16 см
S=√(p(p-a)(p-b)(p-c)=√(16*6*6*4)=√2304=48 см²
48=1/2 * 10 * h₁
h₁=9,6 см
48=1/2 * 12 * h₂
h₂=8 см.
2) по формуле Герона
Полупериметр р=(17+17+16):2=25 дм
S=√(p(p-a)(p-b)(p-c)=√(25*8*8*9)=√14400=120 дм²
120=1/2 * 17 * h₁
h₁=14 2/17 дм
120=1/2 * 16 * h₂
h₂=15 дм.
3) по формуле Герона
Полупериметр р=(4+13+15):2=16 дм
S=√(p(p-a)(p-b)(p-c)=√(16*12*3*1)=√576=24 дм²
24=1/2 * 4 * h₁
h₁=12 дм
48=1/2 * 13 * h₂
h₂=7 5/13 дм.
48=1/2 * 15 * h₃
h₃ = 6 6/7 дм.
Здесь следует рассмотреть сечение шара плоскостью, которая делит и шар,и конус таким образом, что все мы наблюдаем как бы в срезе. Смотри рисунок. Используем расширенную теорему синусов, чтобы узнать радиус описанной окружности вокруг треугольника АВС. Заметим, что этот треугольник равнобедренный. АВравно ВС как образующие конуса. Найдем АВ по теореме Пифагора
AB^2=AH^2+HB^2
AB^2=(3sqrt3)^2+3^2
AB^2=27+9
AB^2=36
AB=6 см.
Найдем противолежащий угол ВСА. Он равен углу ВАС.
По теореме синусов нам нужен синус этого угла.
sinangle BAC=frac{BH}{AB}
sinangle BAC=frac{3}{6}
sinangle BAC=frac{1}{2}
По теореме синусов
2R=frac{AB}{sinangle BCA}
2R=frac{6}{sinangle BAC}
2R=frac{6}{0,5}
2R=12
R=6 - радиус описанной окружности вокруг треугольника АВС, и радиус шара описанного вокруг конуса одновременно.
Объем шара находится по стандартной формуле
V=frac{4}{3}pi*R^3
V=frac{4}{3}pi*6^3
V=4pi*6^2*2
V=8pi*36
V=288pi