ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение:
Допустим,около окружности описан квадрат(правильный четырехугольник),а в окружность вписан квадрат так,что вершины квадрата совпадают с точками касания окружности и описанного квадрата. (на чертеже все видно!)
Сторона описанного квадрата равна 2а. В точке касания она делится пополам,и эти "половинки" равны а.
Образуется прямоугольный треугольник. Из него получаем:
а²+а²=2а²
Тогда сторона вписанного квадрата равна а√2
Периметр вписанного квадрата равен p=4а√2
Периметр описанного квадрата равен P=8а
p/P=(4а√2)/(8а)=√2/2(это отношение периметров)
Площадь вписанного квадрата s=(a√2)²=2a²
Площадь описанного квадрата S=S₂=(2a)²=4a²
Отношение площадей:
s/S=(2a²)/(4a²)=1/2
ответ: √2/2;1/2