Самостійна робота з геометрії з подальшою самоперевіркою. Підготовка до КР з теми: "Декартові координати на площині" 1. Визначити радіус і координати центра кола, заданого рівнянням: (х+8) 2 +у2 = 25.
2. Знайти кутовий коефіцієнт прямої: 2х – у - 10 = 0. 3. Установити відповідність між рівняннями кіл і прямих (1-4) та точками, які їм належать (А-Д): 1. у = -3х – 8 А (6; 1) 2. (х +1)2
+(у – 2)2 = 10 Б (3;2) 3. у = 0,5х + 2 В (-1; -5) 4. (х – 4)
2 + (у +5)2 = 40 Г (2; 1) Д ( -4; 0)
4. XY- діаметр кола. Скласти рівняння цього кола, якщо Х (-7; 2) і Y(5; 6). 5. Скласти рівняння прямої, кутовий коефіцієнт якої дорівнює 8 і вона проходить через точку Р (-1; -9) 6. а) Обчислити значення виразу: cos45° + б) Точка А ( 0; 1) належить одиничному колу з центром у початку координат. Який кут утворює промінь ОА з промінем ОХ, якщо О – початок координат, а ОХ додатній напрямок осі абсцис? Чому дорівнюють синус і косинус цього кута ?
1. ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий) ⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.
ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий) ⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.
ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий) ⇒ MP:AC = 2:3.
MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.
1. ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий) ⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.
ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий) ⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.
ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий) ⇒ MP:AC = 2:3.
MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.
ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий)
⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.
ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий)
⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.
ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий)
⇒ MP:AC = 2:3.
MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.
MN:AB = NP:BC = MP:AC = 2:3 ⇒ ΔMNP подобен ΔАВС по трем пропорциональным сторонам.
Smnp:Sabc = 4:9
Smnp = 4Sabc/9 = 40/9 см² = 4 целых и 4/9 см²
2.
ABCDA₁B₁C₁D₁ - параллелепипед.
Точки M и N принадлежат плоскости (АВС) ⇒ проводим прямую MN.
MN - отрезок сечения.
MN∩AD = X, MN∩DC = Y
Точки К и X принадлежат плоскости ADD₁. Проводим прямую KX.
KX∩AA₁ = L
KL и LM - отрезки сечения.
Точки К и Y принадлежат плоскости CDD₁. Проводим прямую KY.
KY∩CC₁ = O.
КО и ON - отрезки сечения.
KONML - искомое сечение.