М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ZVer00711
ZVer00711
25.06.2022 16:06 •  Геометрия

Самостійна робота з геометрії з подальшою самоперевіркою. Підготовка до КР з теми: "Декартові координати на площині"
1. Визначити радіус і координати центра кола, заданого рівнянням: (х+8)
2
+у2
= 25.

2. Знайти кутовий коефіцієнт прямої: 2х – у - 10 = 0.
3. Установити відповідність між рівняннями кіл і прямих (1-4) та точками, які їм
належать (А-Д):
1. у = -3х – 8 А (6; 1)
2. (х +1)2

+(у – 2)2 = 10 Б (3;2)
3. у = 0,5х + 2 В (-1; -5)
4. (х – 4)

2 + (у +5)2 = 40 Г (2; 1)
Д ( -4; 0)

4. XY- діаметр кола. Скласти рівняння цього кола, якщо Х (-7; 2) і Y(5; 6).
5. Скласти рівняння прямої, кутовий коефіцієнт якої дорівнює 8 і вона проходить через
точку Р (-1; -9)
6. а) Обчислити значення виразу: cos45° + \sqrt{ cos45°}+\sqrt{sin60°}
б) Точка А ( 0; 1) належить одиничному колу з центром у початку координат. Який
кут утворює промінь ОА з промінем ОХ, якщо О – початок координат, а ОХ
додатній напрямок осі абсцис? Чому дорівнюють синус і косинус цього кута ?

👇
Открыть все ответы
Ответ:
artkeyn1
artkeyn1
25.06.2022
1.
ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий)
⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.

ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий)
⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.

ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий)
⇒ MP:AC = 2:3.

MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.

MN:AB = NP:BC = MP:AC = 2:3 ⇒ ΔMNP подобен ΔАВС по трем пропорциональным сторонам.
Smnp:Sabc = 4:9
Smnp = 4Sabc/9 = 40/9 см² = 4 целых и 4/9 см²

2.
ABCDA₁B₁C₁D₁ - параллелепипед.
Точки M и N принадлежат плоскости (АВС) ⇒ проводим прямую MN.
MN - отрезок сечения.
MN∩AD = X,  MN∩DC = Y

Точки К и X принадлежат плоскости ADD₁. Проводим прямую KX.
KX∩AA₁ = L
KL  и LM - отрезки сечения.

Точки К и Y принадлежат плоскости CDD₁. Проводим прямую KY.
KY∩CC₁ = O.
КО и ON - отрезки сечения.

KONML - искомое сечение.

Нужно! 1) на ребрах da, db и dc тэтраэдра dabc отмечены точки m, n и p так, что dm: ma=dn: nb=dp: pc
4,4(38 оценок)
Ответ:
Nastya26061
Nastya26061
25.06.2022
1.
ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий)
⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.

ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий)
⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.

ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий)
⇒ MP:AC = 2:3.

MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.

MN:AB = NP:BC = MP:AC = 2:3 ⇒ ΔMNP подобен ΔАВС по трем пропорциональным сторонам.
Smnp:Sabc = 4:9
Smnp = 4Sabc/9 = 40/9 см² = 4 целых и 4/9 см²

2.
ABCDA₁B₁C₁D₁ - параллелепипед.
Точки M и N принадлежат плоскости (АВС) ⇒ проводим прямую MN.
MN - отрезок сечения.
MN∩AD = X,  MN∩DC = Y

Точки К и X принадлежат плоскости ADD₁. Проводим прямую KX.
KX∩AA₁ = L
KL  и LM - отрезки сечения.

Точки К и Y принадлежат плоскости CDD₁. Проводим прямую KY.
KY∩CC₁ = O.
КО и ON - отрезки сечения.

KONML - искомое сечение.

Нужно! 1) на ребрах da, db и dc тэтраэдра dabc отмечены точки m, n и p так, что dm: ma=dn: nb=dp: pc
4,5(65 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ