ОБРАТНОЕ УТВЕРЖДЕНИЕ:
Если высота, проведённая к стороне (именно "стороне", потому что мы ещё не доказали, что треугольник равнобедренный) треугольника делит эту сторону пополам, то такой треугольник равнобедренный.
Дано: ΔАВС, ВН- высота, АН=НС
Доказать: АВ=ВС
Доказательство: ΔАВН и ΔСВН - прямоугольные, так как ВН - высота.
ΔАВН=ΔСВН по первому признаку равенства треугольников (АВ=ВС, ВН- общая сторона, угол ВНА = углу ВНС=90⁰), значит АВ=ВС, и Δ АВС равнобедренный.
Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))
ОБРАТНОЕ УТВЕРЖДЕНИЕ:
Если высота, проведённая к стороне (именно "стороне", потому что мы ещё не доказали, что треугольник равнобедренный) треугольника делит эту сторону пополам, то такой треугольник равнобедренный.
Дано: ΔАВС, ВН- высота, АН=НС
Доказать: АВ=ВС
Доказательство: ΔАВН и ΔСВН - прямоугольные, так как ВН - высота.
ΔАВН=ΔСВН по первому признаку равенства треугольников (АВ=ВС, ВН- общая сторона, угол ВНА = углу ВНС=90⁰), значит АВ=ВС, и Δ АВС равнобедренный.
Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))
Несколько логических шагов:
1) CAD = ACB = 34 градуса
2) COD - это равнобедренный треугольник с основанием ОС, так как в точке пересечения диагонали параллелограмма делятся пополам, значит, OD = CD = x.
3) Слеовательно, COD = OCD как углы при основании равнобедренного треугольника.
4) COD = 180 - BOC = 180 - 138 = 42 градуса.
5) Значит, OCD тоже 42 градуса.
6) Угол С равен OCD + ACB = 42 + 34 = 76 градусов.
7) Наконец, находим угол В = 180 - 76 = 104 градуса.
Проверяйте вычисления.