Объяснение: площадь трапеции - это произведение полусуммы ее оснований на высоту. Тогда:
Полусумма оснований=(84+30)÷2=114÷2=57см
Высота трапеции: проводим высоты и обозначаем точками КМ, тогда КМ= предположительно АВ(из условия задачи)=30см, а СК=DМ=(84-30)÷2=54÷2=27см. АС=ВD=(201-84-30)÷2=87÷2=43.5см. По теореме Пифагора находим высоту:
АК²=АС²-СК²
АК²=43,5²-27²
АК²=1892.25-729
АК²=1163,25
АК=34,5см. Значит площадь трапеции=57×34,5=1966,5м²
P.s. ответ выходит с остатком потому, что числа подобраны некорректно.
Мы знаем, что cos(180-a)=-cosa.
Пусть сторона АВ=х, тогда сторона ВС=22-х (так как сумма сторон АВ+ВС=22, поскольку ПЕРИМЕТР равен 42, а сторона АС=20).
В треугольнике АВС по теореме косинусов имеем:
АВ(квадрат)=АМ(квадрат)+ВМ(квадрат)-2*АМ*ВМ*Cosa. (1)
В треугольнике ВМС по этой же теореме:
ВС^2=МС^2+ВМ^2-2*МС*ВМ*Cos(180°-a) или
ВС^2=МС^2+ВМ^2+2МС*ВМ*Cosa. (2).
Представим в (1) и (2) известные значения и просуммируем оба уравнения.
Тогда получим:
х^2=125-100Cosa + (22-x)^2=125+100Cosa равно
х^2+(22-х)^2=250. Отсюда имеем квадратное уравнение, решая которое находим х.
х^2-22х+117=0.
Х1=11+√(121-117)=13.
Х2=11-2=9.
ответ: боковые стороны треугольника равны 13 и 9.
P.S. Извиняюсь за текст. Планшетом еще не достаточно овладел.