Надо вычислить расстояние от центра до хорды (все равно какой). Ясно, что треугольник, вершины которого - точки пересечения хорд - правильный. Ясно и то, что центр этого треугольника совпадает с центром окружности. Но - заодно - это центр вписанной в этот треугольник окружности. В правильном треугольнике радиус вписанной окружности равен трети высоты, то есть корень(3)/6 от стороны, а сторона ЭТОГО треугольника а/3.
Итак, есть хорда длины а, отстоящая от центра на расстояние а*корень(3)/18.
R^2 = (a/2)^2 + (а*корень(3)/18)^2 = a^2*7/27; R = a*корень(21)/9
Объяснение:
1. 3) (неравенство треугольника);
2. Т.к. CD можно рассматривать как секущую к прямым BC и AD, то доказательство параллельности AD и BC сводится к нахождению каких-нибудь особых пар углов, которые при параллельности прямых дают определенное значение. Например, можно сказать, что т.к. угол ADC = 15° + 75° = 90°, а угол BCD равен также 90°, то сумма BCD и ADC равна 180. Эта пара углов называется внутренние односторонние. Доказывается, что если их сумма равна 180° (как в нашем случае), то прямые, которые пересекаются секущей, параллельны. То есть AD║BC.
нанааннааан в году в связи с этим