М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hessous
hessous
01.10.2021 06:27 •  Геометрия

На одной стороне угла b отмечены точки а и d , на другой е и с так , что в-d-a и в-е-с вd=3,1 , ве=4,2 , ва=9,3 , вс=12,6 . доказать: ас | | еd . найти : 1) de : ac 2) отношение периметров треугольников abc и deb. решите ))

👇
Ответ:
Admiralchik29
Admiralchik29
01.10.2021

Так как \frac{AB}{BD}=\frac{BC}{BE}=3, то АС | | ЕD

1) DE :AC= \frac{DB}{AB}=\frac{BE}{BC}=\frac{1}{3}

2)Периметры треугольников ABC и DEB относятся как коэффициент подобия, который равен числу 3

 

 

4,4(78 оценок)
Открыть все ответы
Ответ:
viktoriakovalch
viktoriakovalch
01.10.2021

Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:

(x – a)² + (y – b)² = R².

1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).

Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:

AB = √((x₁ - x₂)² + (y₁ - y₂)²).

Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:

cd = R = √((2 - 5)² + (1 - 5)²) = √((- 3)² + (- 4)²) = √(9 + 16) = √25 = 5.

1. Подставим известные значения в уравнение окружности радиуса R = 5 с центром в точке c (2; 1):

(x – 2)² + (y – 1)² = 5²;

(x – 2)² + (y – 1)² = 25.

ответ: (x – 2)² + (y – 1)² = 25.

4,7(80 оценок)
Ответ:
stepanoganezov
stepanoganezov
01.10.2021

Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:

(x – a)² + (y – b)² = R².

1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).

Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:

AB = √((x₁ - x₂)² + (y₁ - y₂)²).

Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:

cd = R = √((2 - 5)² + (1 - 5)²) = √((- 3)² + (- 4)²) = √(9 + 16) = √25 = 5.

1. Подставим известные значения в уравнение окружности радиуса R = 5 с центром в точке c (2; 1):

(x – 2)² + (y – 1)² = 5²;

(x – 2)² + (y – 1)² = 25.

ответ: (x – 2)² + (y – 1)² = 25.

4,8(92 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ