Обозначим вершину равнобедренного треугольника с углом, равным 2а точкой А, две другие вершины, прилежащие к основанию, точками В и С. Опустим из вершины А высоту АК (она же является и биссектрисой и медианой) на основание. Центр вписанной окружности обозначим точкой О, он лежит на высоте АК. Из центра О проведем радиус ОМ, равный r и перпендикулярный боковой стороне АС. Углы ВАК и КАС равны а. Из треугольника АКС АК/АС=cos(a), АС=АК/cos(a). АК=АО+ОК. ОК=r. Из треугольника АОМ ОМ/АО=sin(a), отсюда АО=ОМ/sin(a)=r/sin(a). AK=r/sin(a)+r. Значит АС=(r/sin(a)+r)/cos(a)=r*(1/sin(a)+1)/cos(a)=r*(sin(a)+1)/(sin(a)*cos(a)=2*r*(sin(a)+1)/sin(2*a).
Вспоминаем формулу Герона для площади треугольника. S=√[p(p-a)(p-b)(p-c)] (1) p - это полупериметр. Пусть a=3, b=8, тогда p=(3+8+c)/2=1/2×(с+11) Подставляя выражение для p в (1) получим: √[1/2×(с+11)×(1/2×(с+11)-3)×(1/2×(с+11)-8)×(1/2×(с+11)-с)]=15 Возводим обе части уравнения в квадрат 1/2×(с+11)×(1/2×(с+11)-3)×(1/2×(с+11)-8)×(1/2×(с+11)-с)=225 1/2×(с+11)х1/2×(с+11-6)×1/2×(с+11-16)×1/2×(с+11-2с)=225 1/16×(с+11)(с+5)(с-5)(11-с)=225 (11+с)(11-с)(с+5)(с-5)=225×16 (121-с²)(с²-25)=225×16 121с²-25×121-с⁴+25с²=225×16 с⁴-146с²+121×25+225×16=0 с⁴-146с²+6625=0 Полагаем с²=х, тогда х²-146х+6625=0 D=146²-4×6625=-5188 < 0 Уравнение не имеет действительных корней, поэтому с также не является действительным числом, следовательно, такой треугольник не может существовать.
Значит АС=(r/sin(a)+r)/cos(a)=r*(1/sin(a)+1)/cos(a)=r*(sin(a)+1)/(sin(a)*cos(a)=2*r*(sin(a)+1)/sin(2*a).