М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Кувшин13
Кувшин13
09.05.2020 09:39 •  Геометрия

Вокружности диаметр и хорда взаимно перпендикулярны ,причем диаметр делит хорду точкой их пересечения на два равных отрезка по 4см. а расстояние от точки пересечения диаметра и хорды до центра окружности 3 метра. найдите длину окружности

👇
Ответ:
Vikakotik5
Vikakotik5
09.05.2020

Пусть центр окружности - О
Хорда - АВ
Точка пересечение диаметра и хорды - D

Рассмотрим треугольник АDO

угол D - прямой

АO- радиус окуржности
AD - половина хорды (4 см)

По теореме пифагора найдём гипотенузу АО:

[ 3м= 300 см]

AO^{2} = OD^{2}+AD^{2}\\\\ AO = \sqrt{OD^{2}+AD^{2}}\\\\ AO =\sqrt{300^{2}+4^{2}}\\\\ AO =\sqrt{90000+16}\\\\ AO =\sqrt{90016}\\\\ AO =300.0267

 

[всё-таки кажется, что там все в метрах или всё в сантиметрах, тогда радиус был бы 5 м (см]


Ну и находим длину окружности по формуле
l=2\pi R\\\\ l=2*3.14*300.0266\\ l\approx 1885.123


1885,123см или 18,85 м. 

 

4,5(93 оценок)
Открыть все ответы
Ответ:
Mognolia
Mognolia
09.05.2020
1) Проведем другую диагональ АС. Точку пересечения диагоналей обозначим О.
ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса.
ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС.
ΔАВО=ΔСВО , значит АВ=ВС=2,7 см.
Периметр равен 2(2,7+2,9)=2·5,6=11,2 см.
2) Обозначим длину сторон: х; х-8: х+8; 3(х-8).
По условию:
х+х-8+х+8+3(х-8)=66,
6х-24=66,
6х=90,
х=15.
Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см.
3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85° 
Значит ∠АВD =180-85-30=65°.
∠АВС=∠АВD+∠СВD=65°+65°=130°.
Проведем другую диагональ АС.
ΔАВС по условию равнобедренный: АВ=ВС.
Значит углы при основании равны (180-130):2=25°.
∠САD=85-25=60°.
Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD.
Углы четырехугольника: 95°, 50°, 130°, 85°.
4,6(61 оценок)
Ответ:
робингуд228
робингуд228
09.05.2020
1) Проведем другую диагональ АС. Точку пересечения диагоналей обозначим О.
ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса.
ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС.
ΔАВО=ΔСВО , значит АВ=ВС=2,7 см.
Периметр равен 2(2,7+2,9)=2·5,6=11,2 см.
2) Обозначим длину сторон: х; х-8: х+8; 3(х-8).
По условию:
х+х-8+х+8+3(х-8)=66,
6х-24=66,
6х=90,
х=15.
Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см.
3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85°
Значит ∠АВD =180-85-30=65°.
∠АВС=∠АВD+∠СВD=65°+65°=130°.
Проведем другую диагональ АС.
ΔАВС по условию равнобедренный: АВ=ВС.
Значит углы при основании равны (180-130):2=25°.
∠САD=85-25=60°.
Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD.
Углы четырехугольника: 95°, 50°, 130°, 85°.
4,5(8 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ