Биссектриса параллелограмма отсекает от него равнобедренный треугольник. Это свойство основано на равенстве накрестлежащих углов при пересечении параллельных прямых (стороны параллелограмма) секущей ( биссектриса) Пусть биссектриса угла А будет АМ, угла В - ВК. Угол ВАМ=углу АМD как накрестлежащие, Но ВАМ=МАD как равные половины угла А. Поэтому в ∆ АDM углы при АМ равны, и он - равнобедренный. DM=AD=5см На том же основании ВК отсекает равнобедренный ∆ ВСК. где СК=ВС=5 см СD=AB=12 см Тогда на стороне CD отрезки DМ=5 см, СК=5 см, МК=12-(5+5)=2 см
4) (-2;1)
5) (х + 2) ² + (у-1) ² = 1.
Объяснение:
4)Центр має координати (1; -1).
Підставляємо замість x і у в рівняння паралельного перенесення, і тим самим знаходимо шукані координати:
x' = x-3=1-3=-2
y' = y +2=-1+2=1.
(-2;1) - шукані координати.
5) У данному колі центром є точка (1; 2). При повороті навколо початку координат (проти годинникової стрілки) точка (х; у) переходить в точку (-у; х).
Центр буде (-2; 1). [Радіус не зміниться].
Отже вийде слідуюче рівняння:
(х + 2) ² + (у-1) ² = 1 - рівняння кола.