Сторона описанного правильного треугольника на √6 больше стороны правильного четырёхугольника, вписанного в ту же окружность. Найти сторону треугольника.
Правильный четырехугольник - квадрат, и диаметром окружности, в которую он вписан, является его диагональ.
Обозначим вписанный квадрат КОМН
Пусть его стороны=а.
Тогда диаметр РН описанной вокруг него окружности равен а√2,
радиус ОН=а√2):2=a/√2
Стороны описанного треугольника АВС=а+√6
Радиус ОН вписанной в него окружности =ВН/3
ВН=АВ*sin 60º=√3*(а+√6):2
OH=√3*(а+√6):6
Приравняем оба значения ОН:
a/√2=√3*(а+√6):6 из чего следует
а=(а+√6):√6⇒
a=√6:(√6-1)
АВ=[√6:(√6-1)]+√6
АВ=(√6+6-√6):(√6-1)=6:(√6-1)
Это очень известная задача, и решается она просто (то есть на уровне школьника) только благодаря подбору данных. Само собой, можно сократить все числа на 100, и искать такую точку К внутри треугольника АВС, что АК + 2*ВК + 3*СК минимально.
Но АК + 2*ВК + 3*СК = АК + СК + 2*(ВК + СК) >= AC + 2*BC.
Всегда. Причем равенство возникает только в случае, если К совпадаетс с С. Во всех других случаях АК + 2*ВК + 3*СК > AC + 2*BC;
Поэтому колодец надо рыть прямо в деревне С.
Если бы в деревне С жило 299 семей, такую задачу с трудом решил бы и профессор, причем настоящий, а не местного разлива
Кут між більшою стороною і діагоналлю дорівнює 30°, тому менша сторона дорівнює половині діагоналі.
10:2=5 см - менша сторона