cos(γ)=0,925, γ≈22°.
Объяснение:
Пусть АВ=2 см, AC=4 см и BC=5 см. Пусть α, β, γ - углы соответственно при вершинах A, B, C треугольника. Для нахождения косинусов углов используем теорему косинусов:
1. BC²=AB²+AC²-2*AB*AC*cos(α), откуда следует уравнение 25=4+16-2*2*4*cos(α), или 25=20-16*cos(α). Отсюда 16*cos(α)=-5 и cos(α)=-5/16. Тогда α=arccos(-5/16)≈108°.
2. AC²=AB²+BC²-2*AB*BC*cos(β), откуда следует уравнение 16=4+25-2*2*5*cos(β), или 16=29-20*cos(β). Отсюда 20*cos(β)=13 и cos(β)=13/20. Тогда β=arccos(13/20)≈49°.
3. AB²=AC²+BC²-2*AC*BC*cos(γ), откуда следует уравнение 4=16+25-2*4*5*cos(γ), или 4=41-40*cos(γ). Отсюда 40*cos(γ)=37 и cos(γ)=37/40. Тогда γ=arccos(37/40)≈22°
Проверка: сумма углов треугольника должна быть равна 180°. В нашем случае α+β+γ≈108°+49°+22°=179°≈180°, так что углы найдены верно.
Таким образом, наименьшим углом является γ. Его косинус равен 37/40=0,925, а его градусная величина - ≈22°.
Если одна сторона х, то половина диагонали - тоже х. Сторона и две половины диагоналей образуют треугольник с равными сторонами, т.е. правильный треугольник.
В правильном треугольнике все углы равны 180°:3= 60°. Следовательно, угол между диагоналями равен 60°, а смежный с ним 180°-60°=120°.
---------
Или ( если через х решать, и это будет дольше):
Диагональ прямоугольника делит его на 2 равных прямоугольных треугольника, в которых гипотенуза в два раза больше одного катета.
Пусть этот катет АВ=х, а противолежащий ему угол ВСА = α
Тогда гипотенуза АС=2х
Синус угла, противолежащего известному катету, равен отношению катета к гипотенузе.
sinα=х/2х=0,5
Это синус угла 30°
Диагонали прямоугольника при пересечении делятся пополам и со сторонами образуют равнобедренные треугольники. Обозначим точку пересечения диагоналей О.
Тогда в ∆ ВОС стороны ВО=СО, ∠ОВС=∠ОСВ=30°, и ∠ВОС=120°
Смежный с ним ∠ВОА=180°-120°=60°