DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
Объяснение:
Из условия нам известно, что один из острых углов прямоугольного треугольника равен 60°, а разность гипотенузы и меньшего катета равна 28 см.
Давайте прежде всего найдем третий угол прямоугольного треугольника, зная, что сумма углов треугольника равна 180°.
180° - 90° - 60° = 30° третий угол треугольника.
Известно, что катет лежащий напротив угла в 30° равен половине гипотенузы, а так же известно, что напротив меньшего угла прямоугольного треугольника лежит меньшая сторона.
Составим и решим уравнение.
Пусть меньший катет равен x, а гипотенуза равна 2x.
Исходя из условия:
2x - x = 28;
x = 28 см катет прямоугольного треугольника.
Ищем гипотенузу 2x = 2 * 28 = 56 см.
ответ: 83° и 97°
Объяснение:
Подробно на фотографии