Объяснение:
2. 1.) Пускай гипотенуза это АВ, а катет 4 см это ВС. Тогда мы имеем египетский треугольник. То есть треугольник со сторонами 3 см, 4 см и 5 см. Значит катет СА равен 3 см.
2.) S = 1\2 * СА * ВС = 1\2 * 4 * 3 = 6 с
ответ: S = 6 с
3.
1.) Пускай стороны АВ и ВС это х. Тогда имеем уравнение:
х + х + 14 = 64
2х = 64 - 14
2х = 50
х = 25 см - стороны АВ и ВС
2.) Проведем висоту с вершини угла В на основание АС и назовем её ЕВ. Висота делит основание АС на две равные части т.к в равнобедренном треугольнике висота есть и биссектрисой и медианой. От сюда выпливает что АЕ = ЕС = 7 см Тогда за метрическими соотношениями имеем, что
Е = АЕ * ЕС
ЕВ = √ AE * EC =√ 7 * 7 = √49 = 7 cм
3. Значит площадь равна:
S = 1\2 * AC * ВЕ = 1\2 * 7 * 14 = 1\2 * 98 = 49 сv²
ответ: S = 49 см²
ОН - відстань від т. О до більшої сторони прямокутника ВС (отже ОН - висота трикутника ВСО)
ОМ - відстань від т. О до більшої сторони прямокутника АД (отже ОМ - висота трикутника АДО)
ОР - відстань від т. О до меншої сторони прямокутника АВ (отже ОР - висота трикутника АВО)
ОК - відстань від т. О до меншої сторони прямокутника СД (отже ОК - висота трикутника СДО)
Оскільки Діагоналі прямокутника мають однакову довжину, а також в точці перетину діляться навпіл, значить трикутник ВСО=трикутнику АДО та трикутник АВО=трикутнику СДО.
А це означає, що і висоти у попарно рівних трикутниках між собою рівні, а саме
ОК=ОР, а ОН=ОМ.
Виходить, що ОН=ОМ=4 см та ОК=ОР=9 см (по умові задачі сказано, що точка перетину його діагоналей віддалена від його сторін на 4 см і на 9 см).
У прямокутника протилежні сторони рівні.
АВ=СД=ОН+ОМ=4+4=8 см
ВС=АД=ОР+ОК=9+9=18 см
Периметр = сумі довжин усіх сторін прямокутника
Периметр = АВ+ВС+СД+АД
Отже
Периметр = 8+18+8+18=52 см
Відповідь: периметр прямокутника=52 см