Т.к. треугольник АBC равнобедренный, то прямая MN отсекает от треугольника ABC равнобедренный треугольник поменьше - MCN. В равнобедренном треугольнике углы при основании равны, т.е. если угол MNC = 108 градусов, то углы NMC и NCM будут равны как углы при основании (180 - 108 = 72/2 = 36). т.к. угол NCA равен 36 градусов, то и угол BCA будет равен 36 градусов. угол BAC равен углу BCA как углы при основании равнобедренного треугольника и будет равен так же 36 градусов. угол ABC будет равен разности сумм углов BAC и BCA (угол ABC = 180 - угол BAC + угол BCA = 180 -(36+36) = 108)
Т.к. треугольник АBC равнобедренный, то прямая MN отсекает от треугольника ABC равнобедренный треугольник поменьше - MCN. В равнобедренном треугольнике углы при основании равны, т.е. если угол MNC = 108 градусов, то углы NMC и NCM будут равны как углы при основании (180 - 108 = 72/2 = 36). т.к. угол NCA равен 36 градусов, то и угол BCA будет равен 36 градусов. угол BAC равен углу BCA как углы при основании равнобедренного треугольника и будет равен так же 36 градусов. угол ABC будет равен разности сумм углов BAC и BCA (угол ABC = 180 - угол BAC + угол BCA = 180 -(36+36) = 108)
ответ: 71*; 109*.
Объяснение:
"Найдите углы, образованные при пересечении двух прямых, если разница двух из них равняется 38°."
***
Пусть один угол равен х*, тогда другой будет х+38*.
Сумма этих смежных углов равна 180*;
х+х+38=180*;
2х=142*;
х=71* - меньший угол.
Больший угол равен х+38*=71+38=109*;