ответ:
пусть х градусов меньший,тогда 8х больший зная,что их сумма 180(по свойствам параллелограмма),составим и решим уравнение х+8х=180
9х=180
х=20
итак,20 меньший угол,тогда 8*20=160-больший
1) Если параллелограмм можно вписать в окружность, то он квадрат.
Утверждение неверное.
Если четырёхугольник вписан в окружность, то сумма его противоположных углов, равна 180°. Поскольку противоположные углы параллелограмма равны, то каждый из них равен 90°. Поэтому если параллелограмм можно вписать в окружность, то он может быть прямоугольником или квадратом, то есть не всегда квадрат.
2) Средняя линия треугольника делит его площадь пополам.
Утверждение неверное.
Средняя линия треугольника делит его площадь в отношении 1:3, считая от вершины. (Пусть а-основание, h - высота, опущенная на сторону а. Тогда площадь треугольника S = 0.5 ah. Средняя линия, параллельная стороне а, равна 0,5а, а высота, опущенная из вершины треугольника на среднюю линию, равна 0,5h. Тогда площадь отсекаемого средней линией треугольника равна s = 0.5 · 0.5 a · 0.5h = 0.125ah, то есть s = 0,25 S. Площадь другой отсечённой части, представляющей собой трапецию, равна S - 0.25S = 0.75S.
0,25S : 0.75S = 1:3)
3) Если два угла вписаны в одну окружность и опираются на одну ее хорду, то они равны.
Утверждение неверное.
Если два угла вписаны в одну окружность и опираются на одну хорду, то они равны, если их вершины находятся по одну сторону от хорды, если же их вершины находятся по разные стороны от хорды, и один из углов равен α, то другой угол равен 180° - α.
4) Если в равнобокую трапецию можно вписать окружность, то ее средняя линия равна боковой стороне.
Утверждение верное.
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон его равны между собой.
Пусть боковая сторона трапеции равна а, тогда сумма боковых сторон равна 2а, и сумма оснований равна 2а. А средняя линия равна полусумме оснований. то есть а.
Даны вершины треугольника - точки А (1; -3; 0), В (4, 3, 1), С (-4; -3; 0).
Найти площадь треугольника АВС.
Проще выполнить с применением векторного произведения, так как
S = (1/2)|ABxAC|.
Находим векторы.
АВ = (3; 6; 1), АС = (-5; 0; 0).
|ABxAC| =
= i j k| i j
3 6 1| 3 6
-5 0 0| -5 0 = 0i - 5j +0k - 0j - 0i + 30k = -5j + 30k =
= (0; -5; 30).
Модуль равен √(0² + (-5)² + 30²) = √925 = 5√37.
ответ: S = (1/2)*( 5√37) = (5/2)√37 ≈ 15,2069 кв.ед.