В равнобедренном треугольнике равны не только боковые стороны, но и прилежащие к основанию углы. Рассмотрим на треугольнике MFE, где MF=FE. Опустим высоту FH. Треугольник MFH=EFH (они оба прямоугольные, FH-общая, MF=EF по условию.). Значит угол М равен углу Е. Т.е. в равнобедренном треугольнике углы при основании равны. Начертим треугольник ABC. Пусть равными высотами будут высоты AA1 и CC1. Треугольники ACC1 и CAA1 прямоугольные и имеют равные катеты (AA1 = CC1) и общую гипотенузу (AC), значит они равны по катету и гипотенузе. Т.к. треугольники ACC1 и CAA1 равны, углы A и C равны., значит АВ=СВ, следовательно треугольник равнобедренный.
В треугольнике АВС проведём высоту АК . Найдём еёё длину . Сначала найдём площадь тругольника по формуле Герона . Найдём периметр он 40 см. Теперь найдём полупериметр 20. А теперь найдём площадь. Корень квадратный из произведения 20*3*5*12 получим корень квадратный из 3600 т.е. 60 кв.см Теперь возьмём формулу площади S=a*h\2. h это АК . АК= 120\8= 15 см. Теперь Из точки М проведём отрезок в точку К. АК перпендикулярна ВС по теореме о трёх перпендикулярах КМ тоже перпендикулярна ВС. Значит КМ и есть расстояние от точки М до прямой ВС. Из прямоугольного треугольника КМА , где угол МАК прямой найдём по теореме Пифагора КМ КМ в квадрате будет КА в квадрате плюс МА в квадрате 400+225 = 625 Корень из 625 будет 25см.
Абсцисса т.С равна 3
Объяснение:
А(2;6). Ха=2 -абсцисса т.А
В(4;8). Хв=4 - абсцисса т.В
С(Хм;Ус). Хс - абсцисса т.С
Хс=(Ха+Хв)/2
Хс=(2+4)/2
Хс=6/2
Хс=3
Бог в