40 см
Объяснение:
Дано:
ABCD - ромб
∠В = 120 °
BD = 10 см - диагональ ромба
Найти:
Р - периметр ромба
Противоположные углы ромба равны, поэтому ∠D = ∠B = 120°
Острый угол А ромба, против которого лежит диагональ BD
∠А = 180° - ∠В = 180° - 120° = 60°
Диагональ ромба делит углы ромба пополам, поэтому диагональ BD делит угол В и угол D на углы ∠ABD = ∠ADB = 60°.
Тогда треугольник АВD является равносторонним, потому что все углы его равны по 60°, и стороны ромба АВ = AD = 10 см.
У ромба все стороны равны, поэтому ВС = СD = AD = AD = 10 см
Периметр ромба
Р = 4 · 10 =40 (см)
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D
По теореме Пифагора DC₁²=6²+8²=100
DC₁=10
РК- средняя линия треугольника DCC₁
PK=5
PT|| AD и PT || ВС
РТ=4
AD⊥CD ⇒ РТ⊥СD
AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК
РТ⊥ РК
Аналогично, МТ ⊥МК
Сечение представляет собой прямоугольник
Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18