Обозначим точки пересечения прямой, параллельной АВ,
с АС - К, с ВС -М.
Примем площадь ∆ АВС=S , площадь ∆ СКМ=S₁, площадь четырёухугольника АКМВ=S₂
Тогда S=S₁+S₂
По условию S₁=2 S₂, след. S₂=0,5S₁
Выразим площадь ∆ АВС через S₁
S=S₁+0,5S₁=1,5S₁
КМ║АВ,⇒ треугольники АВС и КМС подобны ( соответственные углы при КМ и АВ равны, угол С - общий).
Отношение их площадей 1,5S₁:S₁=1,5 или 3/2
Площади подобных фигур относятся как квадрат коэффициента подобия их линейных размеров.
k²=3/2
k=√(3/2)
CM:BM=√3:√2 – это ответ.
Объяснение:
1) aob=180-23=157 градусов(смежные)
aod=boc=23 градуса(вертикальные)
cod=aob=157 градусов(вертикальные)
2)Так как doe=coe(по условию) следовательно угол cod= doe+coe= 32+32=64 градуса
угол boc=180 - угол cod=180-64=116 градусов( смежные)
3)угол eod=aob=55 ( вертикальные)
угол foe=180- eod-doc=180-55-25=100 градусов
4) Так как угол doa+aoc=180 (смежные) следовательно угол cob=210-180=30 градусов
угол dob+cob=180(смежные) значит угол dob=180-30=150 градусов
угол aod=cob=30 (вертикальные)
5)Угол aoc=aob+boc=a(альфа)+b(бетта)
Угол aof=180-aoc=180-a-b(смежные)
6) угол aob=180-foa-boc=180-b-a
eod=aob=180-b-a(вертикальные)
1. AF = AB - FB
AF = 8.3 - 5.4
AF = 2.9
2. напротив него угол равен тоже 53 (вертикальные)
а два других равны 180 - 53 = 127 (смежные)
3. угол 1 = х
угол 2 = 2х
всего 3х = 180
180 ÷ 3 = 60
угол 1 = 60
угол 2 = 120
4. АОС = COF BOC = DOC следовательно AOC - BOC = COF - DOC
AOB = AOC - BOC
FOD = COF - DOC
что и требовалось доказать
Объяснение:
дальше не знаю, прости. желаю удачи с оставшимися решением