У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
По условию медиана АМ треугольника АВС равна 1/2 стороны ВС.
Тогда АМ=СМ и ∆ АМС - равнобедренный с основанием АС и равными при АС углами.
АМ=ВМ, и ∆ ВМА равнобедренный с основанием АВ и равными при АВ углами.
Обозначим угол АМС - ∠2, угол АМВ - ∠1, углы при основании ∆ АМС - α
при основании ∆ АМВ - β.
∠1 и ∠2 - смежные. Их сумма равна 180°
∠1+∠ 2=180°
В ∆ АМС сумма углов равна 180° , и
∠2=180°-2 α
В ∆ АМВ сумма углов равна 180°, и
∠1=180°-2 β
Составим систему уравнений и сложим их.
| угол 2=180°-2 α
| угол 1=180°-2 β
180°=360°-2{α+β) откуда
2(α+β)=180°
Поэтому α+β=180:2, и∠САВ=α+β=90°. ⇒ ∆ ВАС- прямоугольный.