Вариант решения без синусов. Основывается на теореме "Если угол одного треугольника равен углу другого, то площади этих треугольников относятся как произведения сторон, заключающих равные углы". Благодаря ей, соотношения площадей, напр. тр-ка АВС и В1А1С будут как ВСхАС/СА1хСВ1. Далее выражаем стороны с индексами через ВС и АС: ВСхАС/1/3ВСх2/3АС. Далее стороны сокращаются, числа перемножаются и получается 9/2 (коэффициент этой пропорции). Таким образом, площадь тр-ка В1А1С будет 27/9/2
Задача на подобие треугольников. Сделаем рисунок по условию задачи и рассмотрим его. В треугольниках ВDЕ и АВС ∠ВЕD=∠ВСА как соответственные при параллельных прямых ВЕ и АС и секущей ВС. ∠ВDЕ=∠ВАС как соответственные углы при параллельных прямых DЕ и АС и секущей ВА. ∠В общий. ⇒ эти треугольники подобны. АВ:ВD=АС:DЕ и ВС:ВЕ=АС:DЕ Пусть ВD=х, а ВЕ=у. Тогда АВ:ВD=(х+7,2):х=16:10, откуда х=12 ( уравнение простое, решить его самостоятельно несложно) Точно так же (у+7,8):у=16:10, откуда у=13. Следовательно, ВD=12, DЕ=13 ( ед. длины)
Вариант решения без синусов. Основывается на теореме "Если угол одного треугольника равен углу другого, то площади этих треугольников относятся как произведения сторон, заключающих равные углы". Благодаря ей, соотношения площадей, напр. тр-ка АВС и В1А1С будут как ВСхАС/СА1хСВ1. Далее выражаем стороны с индексами через ВС и АС: ВСхАС/1/3ВСх2/3АС. Далее стороны сокращаются, числа перемножаются и получается 9/2 (коэффициент этой пропорции). Таким образом, площадь тр-ка В1А1С будет 27/9/2
Объяснение: