Т.к. средняя линия треугольника параллельна основанию и равна его половине(исходя из подобиятреугольников), то каждая сторона данного треугольника в 2 раза больше образованного средними линиями, а значит, и периметр в 2 раза больше, значит, периметр большого треугольника равен 11*2=22 см
Т.к. в р/б треугольнике две стороны равны, то обозначим их за х см, сторона основания меньше боковой стороны, значит будет (х-2) см, тогда:
Р=х+х+х-2=22 3х=24 х=8 см - это боковая сторона 8-2=6 см - это основание. ответ: стороны равны 8, 8 и 6 см.
Нехай дано прямокутник ABCD, BD — діагональ, DC = 10 см, ∠BDC = 60°.
Р-мо BDC:
∠BCD = 90° — як кут прямокутника, отже ΔBDC — прямий, ∠BDC = 60° — за умовою, тоді ∠DBC за теоремою про суму кутів трикутника буде дорівнювати:
∠DBC = 180°−90°−60° = 30°.
По властивості катета, який лежить напроти кута 30°, гіпотенуза трикутника буде рівна:
BD = 2*DC = 2*10 = 20 (cm)
Знайдемо інший катет за т. Піфагора:
Підставимо значення у формулу площі прямокутника:
Відповідь: Площа прямокутника рівна 100√3 см² або приблизно 173,2 см².