Сначала построим линию пересечения плоскости основания и плоскости А1С1Е. Это прямая а, параллельная отрезкам АС и А1С1 (смотри рисунок). Высоту призмы находим ао Пифагору из треугольника: высота(катет)-сторона основания(катет)-диагональ грани(гипотенуза). Высота призмы равна √(5²-4²)=3. Диагональ ВЕ основания равна диаметру описанной вокруг правильного шестиугольника окружности, то есть ВЕ=2*4=8. Тогда КЕ=6. Двугранный угол между плоскостями равен углу образованному прямыми РЕ и КЕ, лежащими в соответствующих плоскостях и перпендикулярными линии а пересечения плоскостей. В прямоугольном треугольнике РКЕ тангенс искомого угла равен отношению противолежащего катета к прилежащему: РК/КЕ=3/6=1/2. ответ: искомый угол равен arctg(0,5). Вариант2 (координатный). Введем систему координат X,Y,Z с началом координат в точке С. Находим по Пифагору отрезок СК=С1Р=√(16-4)=2√3. Получаем координаты точек: Р(0;3;2√3), К(0;0;2√3), E(6;0;2√3). Вычисляем координаты векторов (от координат КОНЦА отнять соответствующие координаты НАЧАЛА) РE{6;-3;0} и KE{6;0;0}. Найдем угол между векторами РЕ и КЕ по формуле cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+z2²)] cosα=(36+0+0)/[√(36+9+0)*√(36+0+0)]=36/18√5 = 2/√5. ответ: искомый угол равен arccos(2/√5). Но если нужен ответ через тангенс, найдем его. Sinα=√(1-cos²α) = 1/√5. Тогда tgα=Sinα/Cosα =1/2. ответ: искомый угол равен arctg(0,5). Вариант3. Еще более усложним решение (по условию задающего). Введем систему координат X,Y,Z с началом координат в точке С. Тогда получаем координаты точек: А1(0;3;4√3), C1(0;3;0), E(6;0;2√3). Общее уравнение плоскости имеет вид Ax+By+Cz+D=0. Уравнение плоскости основания Х0Z имеет вид: Y=0. Уравнение плоскости А1С1Е (она параллельна координатной оси 0Z) имеет вид: Ax+By+D=0. Составим уравнение плоскости по трем точкам, используя формулу: |x-0 0-0 6-0 | | x-0 0 6 | |y-3 3-3 0-3 | = 0. Или | y-3 0 -3 | = 0. |z-4√3 0-4√3 2√3-4√3 | | z-4√3 -4√3 -2√3 | Раскрываем определитель по первому столбцу, находим уравнение плоскости: | 0 -3 | | 0 6 | | 0 6 | (x-0)* |-4√3 -2√3| - (y-3)* |-4√3 -2√3 | + (z-4√3)*| 0 -3 | =0.
Отсюда 12√3*(x-0)-24√3*(y-3)+0*(z-4√3)=0. 12√3*x-24√3*y+72√3=0 или x-2y+6=0. Это и есть уравнение плоскости А1С1Е. Если плоскость задана общим уравнением x-2y+6=0, то вектор n1{1;-2;0} является вектором нормали данной плоскости. Вектором нормали плоскости основания является вектор n2{0;1;0}. Угол между плоскостями можно найти через угол между нормальными векторами данных плоскостей. cosα=(0-2+0)/[√(1+4+0)*√(0+1+0)] или cosα=-2/√5. Получили ТУПОЙ угол, но поскольку плоскости при пересечении образуют две пары вертикальных углов, за угол между плоскостями обычно принимают острый угол, поэтому принимаем cosα=2/√5 (так как cos(180-α)=-cosα). ответ, как и во втором варианте: искомый угол равен arccos(2/√5) или arctg(0,5).
даны координаты вершин треугольника авс: а(0; -10),в(-12; -1),с(4; 12).найти:
1. длину стороны ав:
ав (с) = √((хв-ха)²+(ув-уа)²) = √225 = 15.
2. уравнение сторон ав и ас:
ав : х-ха = у-уа х = у + 10
хв-ха ув-уа -12 9
9х = -12у -120 сократим на 3 и перенесём налево:
3х + 4у + 40 = 0.
у(ав) = -0,75х - 10.
ас : х-ха = у-уа
хс-ха ус-уа
11х - 2у - 20 = 0
у = 5,5х - 10
3. величину угла а:
cos a= ав²+ас²-вс² = 0,4472136.
2*ав*ас
a = 1,107149 радиан.
a = 63,434949 градусов.
4. уравнение высоты cd и ее длину.
к(сд) = -1/к(ав) = -1/(-0,75) = 4/3.
у = (4/3)х + в. для определения "в" подставим координаты точки с:
12 = (4/3)*4 + в, в = 12 - (16/3) = 20/3.
уравнение сд: у = (4/3)х + (20/3).
длину сд можно определить двумя способами: сд = 2s/ab и по координатам точек с и д.
приравниваем уравнения ав и сд: -0,75х - 10 = (4/3)х + (20/3),
(-25/12)х = (20/3) + 10 = 50/3,
х = (50/3)/(-25/12) = (-600/75) = -8,
у = (-3/4)*(-8) - 10 = 6 - 10 = -4. точка d: (-8; -4).
длина сд = √((-8-4)² + (-4-12)²) = √(144 + 256) = √400 = 20.
5. уравнение медианы ве.
точка е как середина ас: (2; 1).
ве: х-хв = у-ув х + 12 = у + 1
хе-хв уе-ув 14 2
знаменатели сократим на 2: х + 12 = 7у + 7.
общее уравнение ве: х - 7у + 5 = 0,
с угловым коэффициентом: у = (1/7)х + (5/7).
6. координаты точки к пересечения медианы ве и высоты cd.
(1/7)х + (5/7) = (4/3)х + (20/3),
(-25/21)х = (125/21)
х = -125/25 = -5, у = (1/7)*(-5) + (5/7) = 0. точка к: (-5; 0).
7. уравнение прямой кр, проходящей через точку к параллельно стороне ав.
угловой коэффициент равен -0,75.
уравнение кр: у = (-0,75)х + в. подставим координаты точки к(-5; 0):
0 = (-0,75)*(-5) + в, в = - (15/4) = -3,75.
у = (-0,75)х - 3,75.
8. координаты точки м, расположенной симметрично точке а относительно прямой cd.
так как cd - перпендикуляр к прямой ав, то точка d(-8; -4) - это та точка, относительно которой требуется найти точку, симметричной точке а.
xm = 2xd - xa = 2*(-8) - 0 = -16,
ym =2yd - ya = 2*(-4) - (-10) = -8 + 10 = 2.
точка м(-16, 2).
объяснение: