В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Дано: КМРТ - прямокутник, КВ - бісектриса, ВР=5 см, МР+РТ+КТ+КМ=18 см. Знайти МК=РТ, МР=КТ.
МР+КМ=18:2=9 см. (це напівпериметр КМРТ)
ΔКМВ - рівнобедрений (∠МКВ=∠ВКТ=90:2=45°; ∠МВК=90-45=45°),
МК=МВ
МК+МВ=9-5=4 см; МК=2 см, МВ=2 см.
МК=РТ=2 см; МР=КТ=2+5=7 см.
Відповідь: 2 см, 7 см, 2 см, 7 см.