Обозначим cos(альфа) = V2 / 10, a и b ---основания трапеции... sin(альфа) = V ( 1 - (cos(альфа))^2 ) = V ( 1 - 2/100 ) = V98 / 10 = 7V2 / 10 если построить высоту трапеции, то получим прямоугольный треугольник, в котором гипотенуза = 10, один катет = h = 10*sin(альфа) = 10*7V2 / 10 = 7V2 второй катет = b - (b-a)/2 = (b+a)/2 = 10*cos(альфа) = V2 Sтрапеции = h*(a+b)/2 = 7V2 * V2 = 14 (((здесь интересный момент в том, что и не нужно совсем отдельно находить основания трапеции... две проведенные высоты трапеции отрезают от трапеции два равных прямоугольных треугольника --- т.к. трапеция равнобедренная в этих треугольниках один катет --- высота, второй катет = (b-a)/2 и можно сразу найти нужную для площади (a+b)/2
1. Пусть больший угол равен х°,тогда: 1угол - х° 2угол - х°-50° Всего - 180° Уравнение: х+х-50=180 2х=180+50 2х=230 х=115(°)-больший угол 115°-50=85°-меньший угол ответ: 115° и 85° 2. При пересечении двух параллельных прямых секущей накрест Лежащие углы равны, значит: 230°:2=115°-один из внутренних накрест лежащих углов С ними ещё 2 вертикальные углы, они тоже равны 115°. Остальные 4 угла - смежные с остальными, они равны 85° ответ: 115°,85°,115°,85°,115°,85°,115°,85°. 3. Рассмотрим треуг-ик АВД: АД-высота,значит АД перпендикулярен ВС, а это значит, что треуг-ик АВД-прямоугольный. Сумма острых углов прямоуг.треуг-ка равна 90° => угол А=90°-60°=30°. ВД=2см и ВД=1/2АВ(т.к. лежит против угла в 30°) => АВ=4см Рассмотрим треуг-ик АВС: Сумма острых углов прямоуг.треуг-ка равна 90°,значит угол С=90°-60°=30°. АВ=4см и АВ=1/2ВС(т.к. лежит против угла в 30°) => ВС=8см. ВС=ВД+ДС и ВС=8см и ВД=2см => 2см+ДС=8см ДС=6см ответ: 6см
ответ: 45°
Объяснение:
Т.к. ЕF || BC и лежит в плоскости квадрата, то угол между EF и BD равен углу между BC и BD. Угол между стороной квадрата и его диагональю всегда 45°