1)Продолжим медиану CМ за точку М до точки D так, чтобы было выполнено равенство CМ = МD, и соединим полученную точку D с точками A и B .
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограмма получаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
ДС=АВ, 2СМ=АВ, СМ=1/2*АВ, АВ=24
2)ΔАВС-прямоугольный. По свойству катета ,лежащего против угла 30 градусов : СВ=1/2*АВ, СВ=12
Общее уравнение окружности с центром в точке (х0,у0) радиуса R имеет вид (х-х0)^2+(у-у0)^2=R^2 По условию задачи центр окружности лежит на оси Ох, а значит имеет координаты (х0,0), R=5. Имеем (х-х0)^2+у^2=5^2 (х-х0)^2+у^2=25. Определим х0. Окружность проходит через точку А(1;4), а значит эта точка удовлетворяет уравнению окружности. Подставим в уравнение окружности х=1, у=4. Получим: (1-х0)^2+4^2=25 (1-х0)^2=25-16 (1-х0)^2=9, откуда 1-х0=-+3, а значит х0= -2 или х0=4 Таким образом (х+2)^2+у^2=25, (х-4)^2+у^2=25 - искомые уравнения окружности.
СВ=12
Объяснение:
1)Продолжим медиану CМ за точку М до точки D так, чтобы было выполнено равенство CМ = МD, и соединим полученную точку D с точками A и B .
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограмма получаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
ДС=АВ, 2СМ=АВ, СМ=1/2*АВ, АВ=24
2)ΔАВС-прямоугольный. По свойству катета ,лежащего против угла 30 градусов : СВ=1/2*АВ, СВ=12