дано:
прямая fd1 принадлежит плоскости aa1d
решение
прямая ad так же принадлежит этой плоскости, но кроме того, она принадлежит и плоскости abd, а значит, найдя точку пересечения этих прямых (а они будут пересекаться так как лежат в одной плоскости и не параллельны) мы и найдем точку пересечения fd1 с плоскостью abd. на рисунке это точка z (прошу прощения у меня довольно криво)
2. так как плоскости a1b1c1 и abc параллельны, то и линии пересечения этих плоскостей третьей параллельны (свойство параллельных плоскостей)
так как мы уже нашли точку пересечения плоскости fb1d1 с плоскостью abd (предыдущее ), то проводим параллельную прямую через нее . чертёж не смогла вставить . поищи в инете .
Высота равна двум радиусам h = 2r = 48
Сторона равна a = S/h = 50
Диагнали D и d
S = Dd/2 ; Dd = 4800; 2 Dd = 9600
Диагонали в ромбе пересекаются под прямым углом По теореме Пифагора
(D/2)^2 + (d/2)^2 = 2500; D^2 + d^2 = 10 000
(D - d)^2 = D^2 + d^2 - 2 Dd = (10000 - 9600) = 400
(D + d)^2 = D^2 + d^2 + 2 Dd = (10000 + 9600) = 19600
D - d = 20
D + d = 140
D = 80
d = 60