SABCD - правильная пирамида , где S- вершина , АВСД - основание. Точка О- пересечение диагоналей основания , SO - высота пирамиды , SK- апофема боковой грани DSC , К∈ДС, ОК параллельноВС и АД, ОК=1/2 ВС ( или АД). Sп=1/2РL+Sосн =80 ( по условию ) L - апофема , Р - периметр Sб=1/2РL=60 ( по условию) Найдём сторону основания :Sп=60+Sосн=80 Sосн=а² а²+60=80 а²=20 а=√20=2√5 Найдём апофему SK ( L), подставим в формулу площади боковой поверхности пирамиды известные значения и выразим L: 1/2·4··2√5·L=60 P=4·2√5=8√5 4√5L=60 L=60:4√5=3√5 Рассмотрим ΔSOK ( угол О=90 ) , по теореме Пифагора SO²=SK²-OK² OK=1|2·a=√5 SO²=(3√5)²-(√5)²=45-5=40 SO=√40=2√10 SO=H H=2√10
Действительно: CB₁/AB₁=BC/BA =14/15 (свойство биссектрисы BB₁ в ΔABC) ⇒ CB₁=14k ,AB₁ =15k ,CA=CB₁+AB₁ =29k ⇒ CB₁/CA =14/29. --- аналогично : A₁P/PA=BA₁/BA =7/15 (свойство биссектрисы BP в ΔABA₁) ⇒A₁P=7m, PA =15m , A₁A=A₁P+PA) =22m ⇒ A₁P/A₁A =7/22.
Таким образом получили: S(A₁PB₁C) =S*14/29 -(S/2)*(7/22). Площадь треугольника вычисляем по формуле Герона : S =√p(p-a)(p-b)(p-c) =√21(21-14)(21-15)(21-13) =√21*7*6*8 = √(7*7*3*3*2*2*4) =7*3*4 =84.
до