По теореме о пропорциональных отрезках в прямоугольном треугольнике, квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота делит гипотенузу:
Дано: ABCD-прямоугольник Sabcd=480cм^2 P=92см CD=BD=с-диагонали Найти: Диагонали с П.с надо всё расписывать, и доказывать равность треугольников ABC i CDA. P=2(a+b) S=a×b S=480см^2; P=92см Далее мы подставляем значения и делим на два, но а и б нам неизвестны, потому что могут появляться другие значения: 92=2(a+b)
a+b=92/2 a+b=46 В итоге у нас получилось 46 см, но у нас есть площадь, поэтому составляем систему уровнения: |a×b=480; |a+b=46;
|(46-b)×b=480 |a=46-b В итоге у нас квадратное уровнение 46b-b^2-480=0 | - b^2-46b+480=0
За теоремою Вієта b1+b2=46 b2×b1=480
b1=16 b2=30 a1=30 b2=16 Так у нас получается 2 значения а и б, поэтому: Расмотрим треугольник АBC /C=90° За теоремою Пифагора: c^2=16^2+30^2=256+900=1156
1156 вытаскиваем из корня квадрата и с=34 см ответ: 34 см
Дано: ABCD-прямоугольник Sabcd=480cм^2 P=92см CD=BD=с-диагонали Найти: Диагонали с П.с надо всё расписывать, и доказывать равность треугольников ABC i CDA. P=2(a+b) S=a×b S=480см^2; P=92см Далее мы подставляем значения и делим на два, но а и б нам неизвестны, потому что могут появляться другие значения: 92=2(a+b)
a+b=92/2 a+b=46 В итоге у нас получилось 46 см, но у нас есть площадь, поэтому составляем систему уровнения: |a×b=480; |a+b=46;
|(46-b)×b=480 |a=46-b В итоге у нас квадратное уровнение 46b-b^2-480=0 | - b^2-46b+480=0
За теоремою Вієта b1+b2=46 b2×b1=480
b1=16 b2=30 a1=30 b2=16 Так у нас получается 2 значения а и б, поэтому: Расмотрим треугольник АBC /C=90° За теоремою Пифагора: c^2=16^2+30^2=256+900=1156
1156 вытаскиваем из корня квадрата и с=34 см ответ: 34 см
По теореме о пропорциональных отрезках в прямоугольном треугольнике, квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота делит гипотенузу:
CD² = AD · DB
CD² = 2 · 3 = 6
CD = √6
ΔADC: ∠ADC = 90°, по теореме Пифагора
АВ = √(AD² + CD²) = √(4 + 6) = √10
Из этого же треугольника найдем:
sin∠A = CD / AC = √6 / √10 = √60 / 10 = 2√15/10
sin∠A = √15/5
cos∠A = AD / AC = 2 / √10 = 2√10 / 10 = √10/5
cos∠A = √10/5
tg∠A = CD / AD = √6/2