в треугольнике abc, ac = cb = 8, угол acb = 120 градусов. точка m удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника abc.
найти угол между ma и плоскостью треугольника abc
точка m находится на равном расстоянии от вершин треугольника abc, следовательно, наклонные ма, мс и мв равны, их проекции также равны, а м проецируется в центр в описанное вокруг δ авс окружности.
оа = ов = ос = r
углы при а и в равны, как углы при основании равнобедренного треугольника.
∠а = ∠в = (180º-120º): 2 = 30º
по т.синусов
r = (ac: sin 30º): 2 = (8: 0,5): 2 = 8 см
δ мoa - прямоугольный, мо = 12, ов = 8, и tg ∠mao = 12/8 = 1,5
∠mao = ≈56º20 "
1.наибольший угол лежит ПРОТИВ наибольшей стороны АС=10см, и это угол В=90°, просто треугольник избитый, египетский.)
2. Значит, второй равен 60°, т.к. сумма острых угло в прямоугольном треугольнике равна 90°.
3. Значит третий равен 180°-100°=80°, т.к. сумма всех углов в треугольнике равна 180°.
4. Еще как существует!) он является прямоугольным, т.к. 3²+4²=5²
5. во вложении
6. пусть х- коэффициент пропорциональности, тогда 3х+х+2х=180, х=30, меньший угол 30°, второй угол 2*30°=60°, и третий 3 *30°=90°
8. во вложении