точку пересечения отрезков обозначим за О.
1)Рассмотрим треугольники ВОС и AOD, они равны, т.к. ВО=OD, ОА=ОС, а угол ВОС=углу AOD, как вертикальные при пересекающихся прямых.
Из этого следует, что ВС=AD, как соответственные элементы равных треугольников.
2)Рассмотрим треугольники ВОА и COD, они равны, т.к. ВО=OD, АО=ОС, а угол ВОА=углуCOD, как вертикальные при пересекающихся прямых.
Из этого следует, что АВ=CD
3)Рассмотрим треугольники АВС и ADC, они равныпо трем сторонам ( АС-общая, AB=CD, AD=BC из доказательств)
точку пересечения отрезков обозначим за О.
1)Рассмотрим треугольники ВОС и AOD, они равны, т.к. ВО=OD, ОА=ОС, а угол ВОС=углу AOD, как вертикальные при пересекающихся прямых.
Из этого следует, что ВС=AD, как соответственные элементы равных треугольников.
2)Рассмотрим треугольники ВОА и COD, они равны, т.к. ВО=OD, АО=ОС, а угол ВОА=углуCOD, как вертикальные при пересекающихся прямых.
Из этого следует, что АВ=CD
3)Рассмотрим треугольники АВС и ADC, они равныпо трем сторонам ( АС-общая, AB=CD, AD=BC из доказательств)
По свойству касательных КВ = КС = 36/2 = 18.
Опять таки по свойству касательных АВ перпендикулярно ВК, а СА перпендикулярно КС. ВА и АС - радиусы, поэтому точка А равноудалена от чторон угла ВКС, поэтому АК - биссектриса угла ВКС, и угол ВКА = 30 градусов.
Поэтому АК = 2*АВ.
Пусть АВ = x, тогда
(2*x)^2 - x^2 = 18^2; 3*x^2 = 18^2;
x = 6*корень(3);
AK = 2*x = 12*корень(3);