Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение:
ответ: обратная теорема - теорема, в которой условием является заключение, а заключением – условие данной теоремы. например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу.
обратная теорема, теорема, условием которой служит заключение исходной теоремы, а заключением — условие.
например:
теорема:
у равнобедренного треугольника углы при основании равны
обратная:
если в треугольнике углы при основании равны, то этот треугольник равнобедренный
теорема:
в треугольнике против большей стороны лежит больший угол
обратная:
в треугольнике против большего угла лежит большая сторона
теорема:
прямоугольник - параллелограмм, у которого равны диагонали.
обратная:
параллелограмм с равными диагоналями является прямоугольником.
Разрезав сферу вертик. плоскостью через ось и вершину треугольника, получим расстояние этой вершины от оси - корень(13^2 - 5^2) = 12 см.
Сторона треуг. будет равна 2*(12*cos 60/2) = 12V3.