Через вершини трикутника ABC, що лежить в одній із двох паралельних площин, проведено паралельні прямі, які перетинають другу площину в точках A1, B1, C1. Доведіть рівність трикутників ABC i A B1 1C1.
АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
1) Координаты середины отрезка ( -1-3)/2=-2; у=(4-10)/2=-3
Точка О(-2;-3), т.к. , чтобы найти координаты середины, надо сложить их соответствующие координаты и каждую сумму поделить на два.
2) Координаты центра этой окружности х= 2 и у=- 4, т.к. окружность имеет такую формулу (х-х₁)₂+(у-у₁)²=R₂, где (х₁;у₁) - центр этой окружности.
3) расстояние АВ =√((2-5)²+(-3+7)²)=√(9+16)=5
от координат конца отнимаем координаты начала, возводим разность в квадрат, находим сумму и из нее извлекаем корень квадратный.