Длина стороны ромба abcd равна 5см.длина диагонали bd равно 6см через точку o пересечения диагоналей ромба проведена прямая ok перпендикулярна его расстояние от точки k до вершины ромба если ok равен
Хорошо, пойдем очень сложным путем, используем формулу Sромба=a^2*sinA Имеем основание и 2 стороны треугольника, по теореме косинусов вычислим угол, 144=100+100-200cosA; cosA=-56/200=-0.28("-"значит что угол тупой) Используя основное тригонометрическое тождество высчитаем синус угла sinA=√(1-(-0.28^2))=0.96. Подставим найденные значения в формулу. S=100*0.96=96 Площадь ромба 96 см ответ: 96
У параллелограмма есть свойство, сумма квадратов диагоналей, равна сумме квадратов всех его сторон, т.к ромб частный случай параллелограмма, используем это свойство. Значит d1^2+d2^2=(2a^2),где a - сторона ромба Подставив значения в формулу получим 144+d2^2=400 d^2=256 d=16 Дальше используем формулу площади четырехугольника через диагонали S=(d1*d2)/2 диагонали в ромбе пересекаются под прямым углом, потому синус не учитываем S=(16*12)/2=96 ответ: 96
Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
диагонали ромба делятся пополам, значит ВО=ОД=6/2=3см
расстояние от К до вершин ромба - это отрезки КВ, КД, КС и КА, причем КВ=КД, КС=КА.
КВ^2=КД^2=8^2+3^2=64+9=73
КВ=КД=корень из73.
АО^2=ОС^2=5^2-3^2=16
АО=ОС=4см
АК^2=КС^2=8^2+4^2=64+16=80
КА=КС=корень из80=4корня из5.