Доказательство в объяснении.
Объяснение:
Определение: внешний угол треугольника (многоугольника) - угол, образованный одной из его сторон и продолжением смежной стороны.
Таким образом, при каждой вершине прямоугольника образуется по два внешних угла. В прямоугольнике внутренние углы прямые, значит и внешние углы, смежные с внутренними, также прямые. Биссектриса прямого угла делит его на два угла по 45°. Следовательно, пересекаясь, биссектрисы образуют прямоугольные равнобедренные треугольники при общей гипотенузе - стороне прямоугольника - треугольники DFA, AFB, BGC и CHD.
Отрезки АВ = CD, BC = AD как противоположные стороны прямоугольника, следовательно отрезки (катеты равнобедренных треугольников) равны: EA=ED=GB=GC, FA=FB=HC=HD => EF=FG=GH=HE (как суммы равных отрезков). Значит EFGH - параллелограмм (по признаку), а так как все стороны равны, то ромб. Кроме того, ∠E = ∠F = ∠G = ∠H = 90° =>
EFGH - квадрат, что и требовалось доказать.
2-й катет выражается следующим образом:
по определению тангенса, как отношения противолежащей стороны к прилежащей
Прилежащий к нему угол будет равен по теореме о сумме углов в треугольнике (равна 180 градусам). Один из углов прямой, другой равен а. Тогда
180-90-а=90-а
Квадрат гипотенузы равен по теореме Пифагора (можно и легче)
По известному тождеству
То есть сама гипотенуза равна
Подставим
Согласно условию b=12 см , а = 35, 2-й катет равен
Другой угол равен
90-35=55 - градусов
Гипотенуза равна