A). Теорема: Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. В нашем случае прямая CD, не лежащая в плоскости α, параллельна прямой АВ, лежащей в плоскости α (как противоположные стороны ромба). Следовательно, прямая CD параллельна плоскости α. Все точки прямой, параллельной плоскости, равноудалены от этой плоскости. Следовательно, точки D и С, принадлежащие прямой СD, параллельной плоскости α, равноудалены от плоскости α, то есть расстояние СN от точки С до плоскости α равно расстоянию DM от точки D до этой плоскости. ответ: искомое расстояние равно а/2.
б). Определение: Полуплоскости, образующие двугранный угол, называются гранями двугранного угла. Общая для граней прямая АВ (линия пересечения плоскостей) называется ребром двугранного угла. Обозначение двугранного угла: DABМ, где D и M -это любые точки, лежащие в разных гранях, а АВ – ребро двугранного угла. Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Расстояние от точки D до плоскости α равно длине перпендикуляра DМ, опущенного на плоскость из этой точки. Проведем через прямую DМ плоскость, перпендикулярную прямой АВ. Эта плоскость и даст нам линейный угол DHM двугранного угла DABМ (угла между плоскостями ромба АВСD и α).
в). Итак, имеем прямоугольный треугольник DHM (угол DMH=90°) с катетом DM, равным расстоянию от точки D до плоскости α и гипотенузой DH, перпендикулярной стороне ромба. Sin(DHM)=DM/DH (отношение противолежащего катета к гипотенузе), где DH - высота ромба. В прямоугольном треугольнике АНD SinA=DH/DA. Тогда DH=DA*Sin60°=a√3/2. DH=a√3/2. DM=a/2 (дано). Тогда Sin(DHM)=DM/DH=(a/2)/(a√3/2)=1/√3 или √3/3. ответ: Sin(DHM)=√3/3.
Пусть AD и BE пересекаются в точке K В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD; Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2; Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4; Таким образом, AK = KD = 48; KE = 24; BK = 72; AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13; AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
параллельна какой-нибудь прямой, лежащей в этой плоскости, то
она параллельна самой плоскости. В нашем случае прямая CD, не
лежащая в плоскости α, параллельна прямой АВ, лежащей в
плоскости α (как противоположные стороны ромба). Следовательно,
прямая CD параллельна плоскости α.
Все точки прямой, параллельной плоскости, равноудалены от этой плоскости. Следовательно, точки D и С, принадлежащие прямой СD, параллельной плоскости α, равноудалены от плоскости α, то есть расстояние СN от точки С
до плоскости α равно расстоянию DM от точки D до этой плоскости.
ответ: искомое расстояние равно а/2.
б). Определение: Полуплоскости, образующие двугранный угол,
называются гранями двугранного угла. Общая для граней прямая АВ
(линия пересечения плоскостей) называется ребром двугранного
угла. Обозначение двугранного угла: DABМ, где D и M -это любые
точки, лежащие в разных гранях, а АВ – ребро двугранного угла.
Двугранные углы измеряются линейным углом, то есть углом,
образованным пересечением двугранного угла с плоскостью,
перпендикулярной к его ребру.
Расстояние от точки D до плоскости α равно длине перпендикуляра
DМ, опущенного на плоскость из этой точки. Проведем через
прямую DМ плоскость, перпендикулярную прямой АВ. Эта плоскость и
даст нам линейный угол DHM двугранного угла DABМ (угла между
плоскостями ромба АВСD и α).
в). Итак, имеем прямоугольный треугольник DHM (угол DMH=90°) с
катетом DM, равным расстоянию от точки D до плоскости α и
гипотенузой DH, перпендикулярной стороне ромба.
Sin(DHM)=DM/DH (отношение противолежащего катета к гипотенузе),
где DH - высота ромба.
В прямоугольном треугольнике АНD SinA=DH/DA.
Тогда DH=DA*Sin60°=a√3/2.
DH=a√3/2. DM=a/2 (дано).
Тогда Sin(DHM)=DM/DH=(a/2)/(a√3/2)=1/√3 или √3/3.
ответ: Sin(DHM)=√3/3.
Подробнее - на -