Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая. Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину. Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы). Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
Белу́ха — гора. Самая высокая вершина Южной Сибири в составе Катунского хребта Алтая. Она имеет две острые пирамиды, разделенные широким седлом. Восточная пирамида, более высокая, поднимается на 4506 м над уровнем моря. Обе вершины и седло Белухи покрыты снегом. В районе Белухи находится главный центр оледенения Алтая. Со склонов Белухи спускается шесть больших длинных ледников и более двадцати малых. Первые ледники Белухи открыл Ф. В. Геблер в 1835 году. Его именем назван один из открытых им ледников. Высоту многих горных вершин, включая Белуху, определил известный сибирский исследователь, профессор Томского университета В. В. Сапожников.
1) вектор АВ(2-0;5-1) ⇒ АВ(2;4)
вектор CD(2-4;-3-1) ⇒ CD(-2;-4) ⇒ вектора коллинеарны ⇒ AB||CD
2) вектор BC(4-2;1-5) ⇒ BC(2; -4)
вектор AD(2-0;-3-1) ⇒AD(2;-4) вектора коллинеарны ⇒ BC||AD ⇒ в четырехугольнике противоположные стороны попарно параллельны ⇒ по определению ABCD - параллелограмм
3) AB = √(2²+4²) = √20
CD = √((-2)²+(-4)²) = √20
BC = √(2²+(-4)²) = √20
AD = √(2²+(-4)²) = √20 ⇒ все стороны равны ⇒ ABCD - ромб