Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Задача элементарная, но хорошо сформулированная. Не "какие-то" две вершины, а вершины той стороны, которой касаются обе упомянутые окружности (то есть - той, которая их общая внутренняя касательная). Доказать это очень просто. Центр вписанной окружности лежит на пересечении биссектрис внутренних углов, поэтому угол, под которым видна эта сторона из центра, равен 180° минус полусумма углов при этой стороне. Центр вневписанной окружности лежит на пересечении биссектрис внешних углов при этой стороне (и биссектрисы третьего внутреннего угла, но это тут не важно), то есть угол, под которым сторона видна из этой точки, равен просто полусумме внутренних углов (ну, 180° минус полусумма внешних, что и дает полусумму внутренних). То есть сумма этих углов равна 180°, что означает, что все четыре точки (два центра и концы стороны) лежат на одной окружности.
расстояние МК - гипотенуза в тр-ке СМК с прямым углом М, катетами МС и СК.
СК из тр-ка АКС катет напротив угла 30град и равн половине гипотенузы АС=1/2 *4=2
МК=V(3V2 *3V2)+2*2=V12+4=V16=4