1-я боковая сторона равна:
по теореме пифагора найдем:
б1² = 36+ 36 = 72
б1 = 6√2
2-я боковая сторона равна:
отметим 2ю как 2х
тогда из прямоугольного треугольника, проекции боковой стороны будет равна ее половине т.е х как показано на рисунке:
также по теореме пифагора найдем х:
36 = 4х² - х²
x² = 12
x = 2√3
значит боковая сторона б2 = 2х = 4√3
Діагоналі ромба в точці перетину діляться навпіл. З цього випливає, що ВО=ДО=ВД:2=24:12=12 см
Потім з трикутника АОД (а взагалі байдуже з якого - всі ті 4 трикутника рівні, вони повністю однакові) за теоремою Піфагора шукаємо АО. А оця сторона АО є половиною іншої діагоналі. Знайшли АО=СО=5 см. Тоді АС=2АО=2*5=10 см
Формула площі ромба: добуток діагоналів розділити на 2. В нас є дві діагоналі: ВД (за умовою)=24 см, АС=10 см (тільки що знайшли). Перемножуємо їх і ділимо на 2. Вийшло (24*10):2=240:2=120 (см²)
А для периметра тобі взагалі треба тільки одна сторона, а вона за умовою 13. 13+13+13+13=52 см (або ж 13*4=52 см)
Діагоналі ромба в точці перетину діляться навпіл. З цього випливає, що ВО=ДО=ВД:2=24:12=12 см
Потім з трикутника АОД (а взагалі байдуже з якого - всі ті 4 трикутника рівні, вони повністю однакові) за теоремою Піфагора шукаємо АО. А оця сторона АО є половиною іншої діагоналі. Знайшли АО=СО=5 см. Тоді АС=2АО=2*5=10 см
Формула площі ромба: добуток діагоналів розділити на 2. В нас є дві діагоналі: ВД (за умовою)=24 см, АС=10 см (тільки що знайшли). Перемножуємо їх і ділимо на 2. Вийшло (24*10):2=240:2=120 (см²)
А для периметра тобі взагалі треба тільки одна сторона, а вона за умовою 13. 13+13+13+13=52 см (або ж 13*4=52 см)
Эта задача решается применением соотношения в прямоугольном треугольнике. Я сейчас начну а потом прикреплю рисунок. Не волнуйся.
Рассмотрим треугольник АДМ sinA=DM/AD; AD=DM/sinA=6/sin60=4√3
По аналогии рассматриваем треугольник КСВ sinB=CK/CB CB=CK/sinB=6/sin45=6/(√2/2)=6√2
ответAD=4√3
CB=6√2
Сейчас рисунок добавлю