Втреугольнике сумма углов равна 180° запишем эту истину для треугольника авс ∠а+∠в+∠с=180° то же самое - для треугольника амс ∠1/2 а+ ∠1/2 с+ ∠амс=180° но по условию ∠амс=3∠в, поэтому ∠1/2 а+ ∠1/2 с+ 3∠в=180° из треугольника авс ∠а +∠с=180 -∠в найдем сумму половин углов а и с (∠а +∠с): 2=(180°-∠в): 2 подставим значение суммы половин углов а и с в уравнение для треугольника амс (180° -∠в): 2 + 3∠в=180° умножим обе стороны уравнения на 2, чтобы избавиться от дроби: 180° -∠в +6∠в=360° 5∠в=180° ∠в=180°: 5=36°
Ромб АВСД, уголВ=уголД, уголА=уголС, уголС=1/2уголД, уголД=2*уголС, уголС+уголД=180, 3*уголС=180, уголС=уголА=180/3=60, уголД=уголВ=2*60=120, АМ=МД=х, АД=2*АМ=2х=ВС=АВ=СД, СО=ОД=х, площадь треугольника ВСО=1/2*ВС*СО*sinС=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадьтреугольника ОДМ=1/2*ОД*МД*sinД=1/2*х*х*корень3/2=х в квадрате/4, площадь треугольника АВМ=1/2*АВ*АМ*sinА=1/2*2х*х*корень3/2=х в квадрате*корень3/2, площадь АВСД=АВ в квадрате*sinА=2х*2х*корень3/2=2*х в квадрате*корень3, площадь треугольника ВМО=площадьАВСД-площадь АВМ-площадь-ВСО-площадь ОДМ=2*х в квадрате-(х в квадрате*корень3/2) -(х в квадрате*корень3/2)-(х в квадрате*корень3/4)=3*х в квадрате*корень3/4, 3√з = 3*х в квадрате*корень3/4, х в квадрате=4, х=2, АВ=АД=СД=ВС=2*2=4, площадь АВСД=4*4*корень3/2=8*корень3
10
S=pi*r^2
r=5
d=10