1) Рассмотрим тр. ВСД и ДКА, углы ВСД и ДКА = 90 градусам, угол КДА = углу ДВС (из равенства Δ ВСД и Δ ДАВ, они равны по двум катетам) Значит тр. ВСД подобен тр. ДКА (по равенству двух углов), и ДК/ВС = АД/ВД,
Пусть дан треугольник ABC (рисунок прилагается). Проведем серединные перпендикуляры к AC и BC. Они пересекутся в точке O (они не могут быть параллельными, так как иначе AC и BC были бы параллельными, либо совпадали). Теперь опустим из O высоту OM на AB и докажем, что она является и медианой. Для треугольника BOC: OK - медиана и высота, значит BO = OC (треугольник BOC равнобедренный). Для треугольника AOC: OL - медиана и высота, значит AO = OC (треугольник AOC равнобедренный) Отсюда AO=BO. Значит OM - высота равнобедренного треугольника. Отсюда OM - медиана. Что и требовалось доказать.
8 и 16
Объяснение:
Пусть одно основание х, тогда второе 3х.
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Составим и решим уравнение (х+3х)/2=16
4х/2=16
2х=16
х=8 - одно основание
3х=24 - второе основание