Одна из сторон параллелограмма в 5 раз больше другой, а его периметр равен 36 см. Найдите стороны параллелограмма. 2. В прямоугольнике АВСD диагонали пересекаются в точке О, АD = 14 см, ВD = 18 см. Найдите периметр треугольника ВОС.
3. Сторона ромба образует с одной из его диагоналей угол 68°. Найдите углы ромба.
4. На диагонали АС параллелограмма АВСD отметили точки Р и К так, что АР = СК (точка Р лежит между точками А и К). Докажите, что ∠АDР = ∠СВК.
5. В параллелограмме АВСD биссектриса угла D пересекает сторону АВ в точке Р. Отрезок АР меньше отрезка ВР в 6 раз. Найдите периметр параллелограмма, если АВ = 14 см.
6. Прямая, пересекающая диагональ ВD параллелограмма АВСD в точке Е, пересекает его стороны АВ и СD в точках М и К соответственно, причем МЕ = КЕ. Докажите, что четырехугольник ВКDМ – параллелограмм.
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.