Диагонали ромба перпендикулярны и точкой пересечения делятся пополам. Тогда в треугольнике АОВ: ∠АОВ = 90°, АО = 20 см, ОВ = 15 см. По теореме Пифагора АВ = √(АО² + ОВ²) = √(400 + 225) = √625 = 25 см
Расстоянием от точки М до сторон АВ и ВС является длина перпендикуляра МВ. 7 см.
Проведем высоты ВК и ВН. Эти отрезки - проекции наклонных МК и МН на плоскость ромба. ВК ⊥ CD, BH ⊥ AD, ⇒ MK ⊥ CD, MH ⊥ AD по теореме о трех перпендикулярах. Значит, МК и МН - расстояния до сторон CD и AD.
Диагонали ромба являются биссектрисами его углов. ∠BDH = ∠BDK, BD - общая гипотенуза для треугольников BDH и BDK, значит ΔBDH = ΔBDK по гипотенузе и острому углу. Значит, ВК = ВН, тогда и МК = МН (если наклонные, проведенные из одной точки, имеют равные проекции, то они равны).
1) Пусть прямоугольник АВСD. Точку пересечения диагоналей обозначим О. Пусть АВ=5 см, а угол АОВ равен 60°. Диагонали параллелограмма (а значит и его частного случая - прямоугольника) в точке пересечения делятся пополам. АО=ОС. ВО=ОD. диагонали прямоугольника равны между собой, Значит АО=ОС=ВО=ОD. Треугольник АОВ - равнобедренный, а так как угол угол АОВ равен 60°, то он и равносторонний. Тогда АО=ОВ=АВ=5 см, а АС=ВD=10 см. 2) Если в окружность вписать правильный шестиугольник, то сторона шестиугольника равна радиусу окружности. Если соединить отрезком противоположные вершины шестиугольника то получится диаметр окружности. Сделав то же самое с двумя другими парами противоположных вершин шестиугольника мы тремя диаметрами разобьем шестиугольник на 6 равносторонних треугольников, каждый из которых образован двумя радиусами и хордой. Видим, что все углы между ЛЮБОЙ хордой и исходящими из ее концов радиусами (а следовательно и диаметрами) равен 60°. 3) Диагональ BD делит трапецию на два треугольника. Части 6 см и 20 см средней линии трапеции являются средними линиями этих треугольников, параллельными основаниям трапеции. Отсюда, основания трапеции равны 12 и 40 см.
ответ: r=1 1/3 cm
R=13.5 cm
Объяснение:
Половина периметра треугольника равна:
p=(3+25+26):2=27cm
Площадь треугольника по т. Герона S=sqrt(p(p-a)(p-b)(p-c))=
=sqrt(27*24*2*1)=3*sqrt(3*3*2*4*2)=3*3*4=36 cm²
С другой стороны S=pr= 27*r=36
=> r=36/27=4/3= 1 1/3 cm - радиус вписанной окружности.
Теперь найдем радиус описанной окружности.
Найдем cos угла , лежащего напротив стороны 3 см по т. косинусов.
9= 625+676-2*25*26*сos x
9=1301-50*26*cos x
1292-1300*cos x=0
cos x= 1292/1300=323/325
Найдем sinx =sqrt (1-(323/325)²)=sqrt( (325²-323²)/325²)=
=sqrt((325+323)(325-323)/325²)=2*sqrt(324)/325=4*9/325=36/325
=>по т синусов имеем 3/sinx=2R
3*325/36=2R
325/12=2R
R=325/24
R=13.5 cm