М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мальчик123870
Мальчик123870
15.12.2021 05:37 •  Геометрия

решить строчно нужно
(основи трапеції дорівнюють 15 і 12 знайдіть линию трапеції)

👇
Открыть все ответы
Ответ:
arinamarkina0
arinamarkina0
15.12.2021
Так как боковые ребра пирамиды равны, ее высота проецируется в центр окружности, описанной около основания.
Докажем это: 
Пусть МО - высота пирамиды. МА = МВ = МС по условию, МО - общий катет для треугольников МОА, МОВ и МОС, тогда эти треугольники равны по гипотенузе и катету, значит и ОА = ОВ = ОС. Т.е. О - центр описанной окружности.

Площадь основания по формуле Герона:
р = (39 + 17 + 28)/2 = 84/2 = 42 см
S = √(p(p - AB)(p - BC)(p - AC)) = √(42 · 3 · 2 · 25 · 14) =
= √(6 · 7 · 3 · 2 · 25 · 2 · 7) = 6 · 7 · 5 = 210 см²

Радиус окружности, описанной около произвольного треугольника:
R = AB·BC·AC / (4·S) = 39 · 17 · 28 / (4 · 210) = 22,1 см
ОА = R = 22,1 см
Из прямоугольного треугольника МОА по теореме Пифагора:
МО = √(МА² - ОА²) = √(22,9² - 22,1²) = √((22,9 - 22,1)(22,9 + 22,1)) =
= √(0,8 · 45) = √36 = 6 см
V = 1/3 ·S · MO = 1/3 · 210 · 6 = 420 см³
4,8(22 оценок)
Ответ:
Aleksey8b
Aleksey8b
15.12.2021
В правильной шестиугольной призме противоположные грани параллельны.
В основаниях малые диагонали равны.
Внутренний угол правильного шестиугольника равен 120°.

Точки А, С₁, В и D₁ не лежат в одной плоскости, поэтому прямые АС₁ и BD₁ скрещивающиеся.

AB║DE и AB = DE, значит АВD₁E₁ параллелограмм, ⇒  АЕ₁║BD₁.
Тогда ∠E₁AC₁ = ∠(АЕ₁ ; AC₁) = ∠(BD₁ ; AC₁) = α - искомый.

Найдем малую диагональ шестиугольника из ΔАВС по теореме косинусов:
АС² = АВ² + ВС² - 2·АВ·ВС·cos120°
AC² = 9 + 9 - 2·3·3·(-1/2) = 18 + 9 = 27
АС = 3√3,    АЕ = АС = 3√3.

ΔАЕЕ₁: ∠АЕЕ₁ = 90°, по теореме Пифагора
               АЕ₁ = √(АЕ² + ЕЕ₁²) = √(27 + 16) = √43

ΔАСС₁ = ΔАЕЕ₁ по двум катетам, значит
АС₁ = АЕ₁ = √43

С₁Е₁ = АС = 3√3 (малая диагональ правильного шестиугольника)

Из ΔС₁АЕ₁ по теореме косинусов:
С₁Е₁² = АС₁² + АЕ₁² - 2·АС₁·АЕ₁·cosα
cosα = (АС₁² + АЕ₁² - C₁E₁²) / (2·AC₁·AE₁)
cosα = (43 + 43 - 27) / (2 · √43 · √43) = 59/86

α = arccos (59/86)
4,8(67 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ