М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ангел23324556
Ангел23324556
23.07.2021 21:23 •  Геометрия

решить дальше. Задание: Найти уравнения сторон АВ и АС в общем виде и их угловые коэффициенты. А(0; -1), В(12; 8), С(10; -6)


решить дальше. Задание: Найти уравнения сторон АВ и АС в общем виде и их угловые коэффициенты. А(0;

👇
Открыть все ответы
Ответ:
6676228
6676228
23.07.2021

Правильная четырёхугольная пирамида MABCD

AB=BC=CD=AD = 4 см , О - точка пересечения диагоналей

OK⊥CM;  OK = 2 см

ABCD - квадрат ⇒ AC = BD = AB*√2 = 4√2 см

ΔOKC : ∠OKC=90°; OC = AC/2 = 2√2 см; OK = 2 см

KC² = OC² - OK² = (2√2)² - 2² = 8-4 = 4  ⇒  KC = 2 см  ⇒

ΔOKC - прямоугольный равнобедренный

ΔMOC ~ ΔOKC по двум углам: прямому и общему острому ∠OCM ⇒

ΔMOC - прямоугольный равнобедренный ⇒

OM = OC = 2√2 см:  MK = KC = 2 см   ⇒  MC = 2*2 = 4 см

Так как пирамида правильная, то MD = MC = 4 см  ⇒

ΔCMD - равносторонний : MD = MC = 4 см = CD  ⇒

Угол при вершине пирамиды равен 180°/3 = 60°

В равностороннем треугольнике медиана DK - она же высота ⇒ 

DK⊥MC.   Аналогично BK⊥MC   ⇒

Угол между смежными боковыми гранями равен углу BKD

DK = DC*sin 60° = 4 * √3/2 = 2√3 см

ΔBKD : BD = 4√2 см; DK = BK = 2√3 см

Теорема косинусов

BD² = BK² + DK² - 2BK*DK*cos ∠BKD

(4√2)² = (2√3)² + (2√3)² - 2 * 2√3 * 2√3 * cos∠BKD

32 = 24 - 24*cos∠BKD

24cos∠BKD = -8

cos∠BKD = -1/3

∠BKD = arccos (-1/3) ≈ 109,5° 

ΔFMO: ∠FOM=90°; OM = 2√2 см; MF = 2√3 см

sin∠MFO = OM / MF = 2√2 / (2√3)= \sqrt{ \frac{2}{3} }32

∠MFO = arcsin (\sqrt{ \frac{2}{3} }32 ) ≈ 54,7°

MF⊥AD  и  OF⊥AD  ⇒

∠MFO - угол между боковой гранью и гранью основания

ответ: угол при вершине 60°;

угол между смежными боковыми гранями arccos (-1/3) ≈ 109,5°;

угол между боковой гранью и гранью основания равен

arcsin (\sqrt{ \frac{2}{3} }32 ) ≈ 54,7°

4,6(94 оценок)
Ответ:
shhfxecbhawc
shhfxecbhawc
23.07.2021

Найдите площади боковой и полной поверхности правильной треугольной пирамиды со стороной основания 4 см и боковым ребром 6 см.

Объяснение:

АВСМ-правильная треугольная пирамида, АВС-основание, МА=6см, АС=4 см.

1)S(полн.пр.пир.)=S(осн)+S(бок)  ;

                              S(бок)=1/2*Р(осн)*а, а-апофема,

                              S(осн)=S(прав. треуг)=(а²√3)/4.

2) S(осн)=(4²√3)/4= 4√3 (см²)  ;

3)Пусть ВК⊥АС, тогда ВК-медиана ,т.к треугольник правильный ⇒

АК=2 см.

Т.к. ВК⊥АС, то МК⊥АС по т. о трех перпендикулярах (МО-высота прирамиды). Тогда ΔАМК-прямоугольный, по т. Пифагора

МК=√(АМ²-АК²) ,    МК=√(36-4)=√32=4√2 (см).

4) Р( осн.)=4*3=12(см) ,

S(бок)=1/2*12*4√2=24√2 (см²)

5)S(полн.пр.пир.)=4√3+24√2 (см²)

4,4(83 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ