Найдите площадь боковой поверхности пирамиды, все грани которой наклонены над углом 45 градусов, а в основании лежит квадрат с диагональю, равной 18корней из двух.
Проще разбираться с прямыми в виде у=ах+в. Для параллельных прямых коэффициент а одинаков. Коэффициент в - это точка пересечения прямой с осью Оу. Преобразуем уравнение прямой 3x-5y+6=0: у = (3/5)х + (6/5) = 0,6х + 1,2. Прямая через точку А пересечёт ось Оу в точке: -17+(11*0,6) = -17 + 6,6 = -10,4. Получаем уравнение прямой через точку А: у = 0,6х - 10,4. Осталось преобразовать её в вид Мх+Ny+G=0. Для этого полученное уравнение запишем с коэффициентами в виде дроби: у = (6/10)*х - (104/10). Приведя к общему знаменателю, получаем: 10у = 6х - 104. Или, сократив на 2: 3х - 5у - 52 = 0.
Пусть основание = х, тогда каждая из боковых сторон = х+1 х + х+1 + х+1 = 50 3х + 2 = 50 3х = 50 - 2 3х = 48 х = 48 : 3 х = 16 м - основание
х+1 = 16+1 = 17 м - боковые стороны
Площадь можно найти разными
Например, найдем высоту (h), опущенную к основанию. Эта высота является также медианой, значит, разделит основание пополам, тогда по теореме Пифагора: h = √(17²-8²) = √(289-64) = √225 = 15 м S = (1/2) * 16 * 15 = 120 м²
Можно по формуле Герона: р = 50/2 = 25 S = √(25(25-17)(25-17)(25-16)) = √(25*8*8*9) = √14400 = 120 м²
АВСД основание
Р вершина
О середина стороны основания
АВ=18
РО=0,5*АВ/cos45=9√2
Sбок=4*0,5*РО*АВ=2*9√2*18=324√2