Противоположные стороны параллелограмма равны.
AD = BC = 30,2 см
AB = CD = 13,3 см
Объяснение:
Диагонали параллелограмма точкой пересечения делятся пополам, =>
АО = ОС = АС / 2 = 20 см
BO = OD = BD /2 = 12 см
Из ΔАВО по теореме косинусов:
АВ² = АО² + ВО² - 2АО·ВО·cos40°
AB² = 400 + 144 - 2 · 20 · 12 · 0,766 ≈ 176,32
AB = 13,3 см
∠ВОС = 180° - 40° = 140° (так как, они смежные)
Из треугольника ВОС по теореме косинусов:
BC² = BO² + CO² - 2BO·CO·cos140°
BC² = 144 + 400 - 2 · 12 · 20 · (- 0,766) ≈ 911,68
BC = 30,2 см
Объяснение:
Уравнение окружности имеет вид:
(x-x0)²+(y-y0)²=r²
Где (х0;у0) - координаты центра. r- радиус.
Подставив вместо х и у координаты данных точек получаем систему трех уравнений с тремя неизвестными:
для упрощения записи, вместо х0 напишу х, а вместо у0 напишу у:
(-3-x)²+y²=r²
(1-x)²+(3-y)²=r²
(5-x)²+y²=r²
вычтем из первого уравнения третье:
(-3-x)²-(5-x)²=0
9+6x+x²=25-10x+x²
16x=16
x=1
тогда получаем :
16+y²=r²
(3-y)²=r²
16+y²-(3-y)²=0
16+y²=9-6y+y²
6y=-7
y=-7/6
Тогда r²=820/49
Итак уравнение окружности имеет вид:
(x-1)²+(y+7/6)²=820/49