Медиана треугольника это половина диагонали параллелограмма, построенного на сторонах этого треугольника, как на векторах. То есть это половина суммы векторов ab и ac. Но сумма двух векторов дает результирующий вектор, модуль которого можно найти по теореме косинусов и он равен: |{ab} + {ac|² = |{ab}|²+|{ac|² - 2|{ab}|*|{ac}|*cos({ab},{ac}), где cos({ab},{ac}) это косинус угла между векторами {ab} и {ac}, когда они соединены по правилу сложения векторов - конец первого - начало второго. В нашем случае угол между векторами будет равен 120°, модуль вектора |ab|=4, модуль вектора |ac|=6, а косинус угла между ними равен Cos120°= -0,5. Тогда модуль суммы этих векторов равен |m|= √(16+36+2*4*6*0,5) = √76=2√19. Искомая медиана am (модуль вектора am) равна половине этой суммы, то есть √19. ответ: АМ=√19.
<BAC=<DEC- это выполнялось бы . если треугольники были бы подобны и тогда CB=AB
Но по условию задачи AB>CB, поэтому <BAC≠<DEC
<DEC=<DCE=<ACB(последние 2 угла вертикальные, поэтому равны)
значит надо доказать что в ΔАВС <A меньше <ACB
по т синусов для треугольника АВС
AB/sin<ACB=CB/sin<A
так как AB>BC и синус угла-возрастает от 0 до 90 градусов, то
следует что делитель первой дроби больше делителя второй
Или sin<ACB больше sin<A-значит <ACB больше <A
и <CDE больше <BAC