М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
57601
57601
31.05.2022 22:19 •  Геометрия

решить две задачи по геометрии за 9 класс по теореме синусов


решить две задачи по геометрии за 9 класс по теореме синусов

👇
Открыть все ответы
Ответ:
mrarmen1999mailru
mrarmen1999mailru
31.05.2022

<BAC=<DEC- это выполнялось бы . если треугольники были бы подобны и тогда CB=AB

Но по условию задачи AB>CB, поэтому <BAC≠<DEC

<DEC=<DCE=<ACB(последние 2 угла вертикальные, поэтому равны)

значит надо доказать что в ΔАВС  <A меньше <ACB

по т синусов для треугольника АВС

AB/sin<ACB=CB/sin<A

так как AB>BC и синус угла-возрастает от 0 до 90 градусов, то

следует что делитель первой дроби больше делителя второй

Или sin<ACB больше sin<A-значит <ACB больше <A

и <CDE больше <BAC

4,4(5 оценок)
Ответ:
levkim
levkim
31.05.2022
Медиана треугольника это половина диагонали параллелограмма, построенного на сторонах этого треугольника, как на векторах. То есть это половина суммы векторов ab и ac.
Но сумма двух векторов дает результирующий вектор, модуль которого можно найти по теореме косинусов и он равен:
    |{ab} + {ac|² = |{ab}|²+|{ac|² - 2|{ab}|*|{ac}|*cos({ab},{ac}), где cos({ab},{ac}) это косинус угла между векторами {ab} и {ac}, когда они соединены по правилу сложения векторов - конец первого - начало второго.
В нашем случае угол между векторами будет равен 120°, модуль вектора |ab|=4, модуль вектора |ac|=6, а косинус угла между ними равен Cos120°= -0,5.
Тогда модуль суммы этих векторов равен |m|= √(16+36+2*4*6*0,5) = √76=2√19. Искомая медиана am (модуль вектора am) равна половине этой суммы, то есть √19.
ответ: АМ=√19.
4,5(24 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ