Теорема Пифагора В прямоугольном треугольнике катеты аи Ъ, гипотенуза – с. Найди гипотенузу прямоугольного треугольника, если катеты равны 4 см и 6 см. L ответ:
Четырёхугольник АВСД - квадрат в том случае, если его стороны равны и диагонали равны. Находим длины сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √18 ≈ 4,242640687, BC = √((Хc-Хв)²+(Ус-Ув)²) = √18 ≈ 4.242640687, СД = √((Хд-Хс)²+(Уд-Ус)²) = √18 ≈ 4.242640687, АД = √((Хд-Ха)²+(Уд-Уа)²) = √18 ≈ 4.242640687.
Находим длины диагоналей: AC = √((Хc-Хa)²+(Ус-Уa)²) = √36 = 6, ВД = √((Хд-Хв)²+(Уд-Ув)²) = √36 = 6.
Доказано, условия подтверждены.
861.2) Найти угол А треугольника АВС если: А(1; 2), В(-1; 3), С(3; 2). Находим длины сторон АВ = √((Хв-Ха)²+(Ув-Уа)²) = √5 ≈ 2.236067977, BC = √((Хc-Хв)²+(Ус-Ув)²) = √17 ≈ 4.123105626, AC = √((Хc-Хa)²+(Ус-Уa)²) = √4 = 2.
Определяем косинус угла А: cos A= (АВ²+АС²-ВС²)/(2*АВ*АС) = -0.894427. Этому косинусу соответствует угол 2,677945 радиан или 153,4349 градусов.
Пусть у меньшей окружности радиус R и расстояние от вершины угла до центра D; а у большой k*R и k*D; - ясно, что эти расстояния пропорциональны. k нужно найти из отношения площадей. Условие, что окружности касаются, означает, что k*D - D = R + k*R; то есть R/D = (k* - 1)/(k + 1); легко видеть, что R/D это синус половины угла, который надо найти, так как центры окружности лежат на биссектрисе. Что касается величины к, то её нетрудно подобрать, k^2 = 97 + 56√3; Легко видеть, что k^2 = 49 + 2*7*4√3 + 48 = (7 + 4√3)^2; то есть k = 7 + 4√3; технически задача уже решена. sin(α/2) = (7 + 4√3 - 1)/(7 + 4√3 +1) = √3/2; все преобразования сделайте сами. То есть α/2 = 60°; α = 120°;
По теореме Пифагора
a^2+b^2=c^2
4^2+6^2=c^2
c^2=16+36=52
c=√52=2√13