Значит так: Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) . Запишем неравенство: - всё это конечно углы. Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP) ∠P>∠N Значит против ∠Р лежит сторона, большая от стороны против угла N И меньшая стороне NP. В итоге получаем: NP>ON>OP Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
Объяснение:
1) Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника.
То есть должно быть AB/BC=AD/DC. Здесь же 3/5≠2/4. Значит <ABD и <CBD не могут быть одинаковыми
2) Исходя из данных, <ABD=90-40=50. При этом <ABD+<CBD=90. Но по данным рисунка <CBD=50, значит ошибка в каком-то из этих углов.
3) В прямоугольном тр-ке ABD найдём BD:
BD²=AB²-AD²=25-9=16
BD=4
Но в прямоугольном тр-ке BDC гипотенуза BC=4 не может быть равна одному из катетов (BD=4).